Inside the human body, reactive derivatives of oxygen, known as reactive oxygen species (ROS) such as the superoxide radical (O2•), hydroxyl radical (•OH) and hydrogen peroxide (H2O2), are constantly generated. The ROS easily cause oxidative damage to various biomolecules such as proteins, lipids and DNA leading to various disease conditions. Iron chelators function as antioxidants by scavenging ROS and also reduce the amount of available iron thereby decreasing the quantity of •OH generated by Fenton reactions. In this study, the antioxidant activity of the iron chelators: caffeic acid (CA), 2,3-dihydroxybenzoic acid (DHBA), desferroxamine B (FOB) and benzohydroxamic acid (BHA) were determined using five different in vitro antioxidant assays. The antioxidant assays used were: iron binding ability, reducing ability using the potassium ferricyanide reduction method, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, H2O2 scavenging activity and •OH scavenging activity. The standard used for the iron binding ability was Na2EDTA whereas vitamin C was used as a standard for the remaining assays. The iron chelators showed a concentration dependent increase in their radical scavenging activities as well as their reducing ability. At the concentration of 1 mM, FOB had the highest iron binding ability of 93.7% whereas DHBA had the lowest iron binding ability of 5.0% compared to the standard Na2EDTA which had 94.8%. The iron chelators, with the exception of BHA, showed good reducing ability than vitamin C. Caffeic acid showed significant DPPH, hydrogen peroxide and hydroxyl radical scavenging activities of 84.7%, 99.8% and 14.5%, respectively. All the iron chelators were observed to show significant activities in all five antioxidant assays.
Background Leishmaniasis is a disease caused by the protozoan parasite, Leishmania . The disease remains a global threat to public health requiring effective chemotherapy for control and treatment. In this study, the effect of some selected phenolic compounds on Leishmania donovani was investigated. The compounds were screened for their anti-leishmanial activities against promastigote and intracellular amastigote forms of Leishmania donovani . Methodology/Principal findings The dose dependent effect and cytotoxicity of the compounds were determined by the MTT assay. Flow cytometry was used to determine the effect of the compounds on the cell cycle. Parasite morphological analysis was done by microscopy and growth kinetic studies were conducted by culturing cells and counting at 24 hours intervals over 120 hours. The cellular levels of iron in promastigotes treated with compounds was determined by atomic absorption spectroscopy and the effect of compounds on the expression of iron dependent enzymes was investigated using RT-qPCR. The IC 50 of the compounds ranged from 16.34 μM to 198 μM compared to amphotericin B and deferoxamine controls. Rosmarinic acid and apigenin were the most effective against the promastigote and the intracellular amastigote forms. Selectivity indexes (SI) of rosmarinic acid and apigenin were 15.03 and 10.45 respectively for promastigotes while the SI of 12.70 and 5.21 respectively was obtained for intracellular amastigotes. Morphologically, 70% of rosmarinic acid treated promastigotes showed rounded morphology similar to the deferoxamine control. About 30% of cells treated with apigenin showed distorted cell membrane. Rosmarinic acid and apigenin induced cell arrest in the G0/G1 phase in promastigotes. Elevated intracellular iron levels were observed in promastigotes when parasites were treated with rosmarinic acid and this correlated with the level of expression of iron dependent genes. Conclusions/Significance The data suggests that rosmarinic acid exerts its anti-leishmanial effect via iron chelation resulting in variable morphological changes and cell cycle arrest.
CD163 is an acute-phase-regulated monocyte/macrophage membrane receptor expressed late in inflammation. It is involved in the haptoglobin-mediated removal of free hemoglobin from plasma, has been identified as a naturally soluble plasma glycoprotein with potential anti-inflammatory properties, and is possibly linked to an individual's haptoglobin phenotype. High levels of soluble CD163 (sCD163) in a malaria episode may therefore downregulate inflammation and curb disease severity. In order to verify this, the relationships between sCD163 levels, malaria severity, and selected inflammatory mediators ( . Median sCD163 levels were higher in UM (11.9 g/ml) patients than in SA (7.7 g/ml; P ؍ 0.010) and CM (8.0 g/ml; P ؍ 0.031) patients. Levels of sCD163 were also higher in all patient groups than in a group of 81 age-matched healthy controls. The higher sCD163/TNF-␣ ratio in UM patients, coupled with the fact that sCD163 levels correlated with TNF-␣ levels in UM patients but not in CM and SA patients, suggests inflammatory dysregulation in the complicated cases. The study showed that sCD163 levels are elevated during acute malaria. High sCD163 levels in UM patients may be due to the induction of higher-level anti-inflammatory responses, enabling them to avoid disease complications. It is also possible that UM patients simply lost their CD163 receptors from macrophages in inflammatory sites while complicatedmalaria patients still had their receptors attached to activated macrophages, reflecting ongoing and higherlevel inflammation associated with complicated malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.