One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged.To this end, we develop a framework for capturing pragmatic devices-such as politeness strategies and rhetorical prompts-used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions. * Corresponding senior author.
Online discussions often derail into toxic exchanges between participants. Recent efforts mostly focused on detecting antisocial behavior after the fact, by analyzing single comments in isolation. To provide more timely notice to human moderators, a system needs to preemptively detect that a conversation is heading towards derailment before it actually turns toxic. This means modeling derailment as an emerging property of a conversation rather than as an isolated utterance-level event.Forecasting emerging conversational properties, however, poses several inherent modeling challenges. First, since conversations are dynamic, a forecasting model needs to capture the flow of the discussion, rather than properties of individual comments. Second, real conversations have an unknown horizon: they can end or derail at any time; thus a practical forecasting model needs to assess the risk in an online fashion, as the conversation develops. In this work we introduce a conversational forecasting model that learns an unsupervised representation of conversational dynamics and exploits it to predict future derailment as the conversation develops. By applying this model to two new diverse datasets of online conversations with labels for antisocial events, we show that it outperforms state-of-the-art systems at forecasting derailment.
Community norm violations can impair constructive communication and collaboration online. As a defense mechanism, community moderators often address such transgressions by temporarily blocking the perpetrator. Such actions, however, come with the cost of potentially alienating community members. Given this tradeoff, it is essential to understand to what extent, and in which situations, this common moderation practice is effective in reinforcing community rules.In this work, we introduce a computational framework for studying the future behavior of blocked users on Wikipedia. After their block expires, they can take several distinct paths: they can reform and adhere to the rules, but they can also recidivate, or straight-out abandon the community. We reveal that these trajectories are tied to factors rooted both in the characteristics of the blocked individual and in whether they perceived the block to be fair and justified. Based on these insights, we formulate a series of prediction tasks aiming to determine which of these paths a user is likely to take after being blocked for their first offense, and demonstrate the feasibility of these new tasks. Overall, this work builds towards a more nuanced approach to moderation by highlighting the tradeoffs that are in play.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.