Mechanical forces between cells have a principal role in the organization of animal tissues. Adherens junctions are an important component of these tissues, connecting cells through their actin cytoskeleton and allowing the assembly of tensile structures. At least one adherens junction protein, beta-catenin, also acts as a signalling molecule, directly regulating gene expression. To date, adherens junctions have only been detected in metazoa, and therefore we looked for them outside the animal kingdom to examine their evolutionary origins. The non-metazoan Dictyostelium discoideum forms a multicellular, differentiated structure. Here we describe the discovery of actin-associated intercellular junctions in Dictyostelium. We have isolated a gene encoding a beta-catenin homologue, aardvark, which is a component of the junctional complex, and, independently, is required for cell signalling. Our discovery of adherens junctions outside the animal kingdom shows that the dual role of beta-catenin in cell-cell adhesion and cell signalling evolved before the origins of metazoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.