The synthonic modeling approach provides a molecule-centered understanding of the surface properties of crystals. It has been applied extensively to understand crystallization processes. This study aimed to investigate the functional relevance of synthonic modeling to the formulation of inhalation powders by assessing cohesivity of three active pharmaceutical ingredients (APIs, fluticasone propionate (FP), budesonide (Bud), and salbutamol base (SB)) and the commonly used excipient, α-lactose monohydrate (LMH). It is found that FP (-11.5 kcal/mol) has a higher cohesive strength than Bud (-9.9 kcal/mol) or SB (-7.8 kcal/mol). The prediction correlated directly to cohesive strength measurements using laser diffraction, where the airflow pressure required for complete dispersion (CPP) was 3.5, 2.0, and 1.0 bar for FP, Bud, and SB, respectively. The highest cohesive strength was predicted for LMH (-15.9 kcal/mol), which did not correlate with the CPP value of 2.0 bar (i.e., ranking lower than FP). High FP-LMH adhesive forces (-11.7 kcal/mol) were predicted. However, aerosolization studies revealed that the FP-LMH blends consisted of agglomerated FP particles with a large median diameter (∼4-5 μm) that were not disrupted by LMH. Modeling of the crystal and surface chemistry of LMH identified high electrostatic and H-bond components of its cohesive energy due to the presence of water and hydroxyl groups in lactose, unlike the APIs. A direct comparison of the predicted and measured cohesive balance of LMH with APIs will require a more in-depth understanding of highly hydrogen-bonded systems with respect to the synthonic engineering modeling tool, as well as the influence of agglomerate structure on surface-surface contact geometry. Overall, this research has demonstrated the possible application and relevance of synthonic engineering tools for rapid pre-screening in drug formulation and design.
Synthonic engineering tools, including grid-based searching molecular modelling, are applied to investigate the wetting interactions of the solute and four crystallisation solvents (ethanol, ethyl acetate, acetonitrile and toluene) with the {100}, {001} and {011} forms of RS-ibuprofen. The grid-based methods, in particular the construction of a crystal slab parallel to a given plane in a coordinate system with one axis perpendicular to the surface, are defined in detail. The interaction strengths and nature (dispersive, hydrogen bonding (H-bonding) or coulombic forces) are related to the crystal growth rates and morphologies. The solute is found to interact strongest with the capping {011}, then the side {001} and weakest with the top {100} habit surfaces. The solute interactions with the {100} and {001} surfaces are found to be almost solely dominated by dispersive force contributions, whilst the same with the {011} surfaces are found to have a greater contribution from H-bonding and coulombic forces. The increased surface rugosity, at the molecular level of the {011} surfaces, results in a favourable docking site in a surface 'valley', not present in the {100} and {001} surfaces. The H-bonding solvents ethanol, acetonitrile and ethyl acetate are found to strongly interact with the {011} surfaces and weakly with the {001} surfaces, with the {011} interactions having a much greater contribution from H-bonding and coulombic forces. The interaction energies of the apolar and aprotic solvent toluene, with the {011} and {001} surfaces, are found to be very close. Toluene is found having slightly stronger interactions with the {001} than the {011} surfaces, which are all dominated by dispersive interactions. The ratio of the average energy of the top 100 solvent interactions with the {001} surface divided by the average energy of the top 100 interactions with the {011} surface is compared to the ratio of the experimentally measured growth rates of the same forms. In general, the interaction energy ratio is found to have an inverse ratio with the growth rates, implying that the solvents which are calculated to interact strongly with a particular surface are impeding the growth of that surface and reducing the growth rate, in turn impacting upon the final morphology of the material.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.