OBJECTIVE De novo infections of the spine are an increasing healthcare problem. The decision for nonsurgical or surgical treatment is often made case by case on the basis of physician experience, specialty, or practice affiliation rather than evidence-based medicine. To create a more systematic foundation for surgical assessments of de novo spinal infections, the authors applied a formal validation process toward developing a spinal infection scoring system using principles gained from other spine severity scoring systems like the Spine Instability Neoplastic Score, Thoracolumbar Injury Classification and Severity Score, and AO Spine classification of thoracolumbar injuries. They utilized an expert panel and literature reviews to develop a severity scale called the "Spinal Infection Treatment Evaluation Score" (SITE Score). METHODS The authors conducted an evidence-based process of combining literature reviews, extracting key elements from previous scoring systems, and obtaining iterative expert panel input while following a formal Delphi process. The resulting basic SITE scoring system was tested on selected de novo spinal infection cases and serially refined by an international multidisciplinary expert panel. Intra- and interobserver reliabilities were calculated using the intraclass correlation coefficient (ICC) and Fleiss’ and Cohen’s kappa, respectively. A receiver operating characteristic analysis was performed for cutoff value analysis. The predictive validity was assessed through cross-tabulation analysis. RESULTS The conceptual SITE scoring system combines the key variables of neurological symptoms, infection location, radiological variables for instability and impingement of neural elements, pain, and patient comorbidities. Ten patients formed the first cohort of de novo spinal infections, which was used to validate the conceptual scoring system. A second cohort of 30 patients with de novo spinal infections, including the 10 patients from the first cohort, was utilized to validate the SITE Score. Mean scores of 6.73 ± 1.5 and 6.90 ± 3.61 were found in the first and second cohorts, respectively. The ICCs for the total score were 0.989 (95% CI 0.975–0.997, p < 0.01) in the first round of scoring system validation, 0.992 (95% CI 0.981–0.998, p < 0.01) in the second round, and 0.961 (95% CI 0.929–0.980, p < 0.01) in the third round. The mean intraobserver reliability was 0.851 ± 0.089 in the third validation round. The SITE Score yielded a sensitivity of 97.77% ± 3.87% and a specificity of 95.53% ± 3.87% in the last validation round for the panel treatment decision. CONCLUSIONS The SITE scoring concept showed statistically meaningful reliability parameters. Hopefully, this effort will provide a foundation for a future evidence-based decision aid for treating de novo spinal infections. The SITE Score showed promising inter- and intraobserver reliability. It could serve as a helpful tool to guide physicians’ therapeutic decisions in managing de novo spinal infections and help in comparison studies to better understand disease severity and outcomes.
Objectives Primary objectives were outcomes comparison of instrumented surgery used for de-novo spinal infections in terms of infection recurrence, reoperations, primary failure, mortality, and length of stay relative to non-instrumented surgery. Secondary objectives were outcomes for surgical and non-surgical treatment of de-novo spinal infections regarding recurrence of infection, mortality, quality of life, and length-of-stay. Methods A systematic literature review was performed using the PubMed database. Studies comparing outcome variables of patients with de-novo spinal infections (DNSI) treated with and without instrumentation and surgical versus non-surgical treatment were included. Studies primarily focusing on epidural abscesses or non-de-novo infections were excluded. A meta-analysis was performed for infection recurrence, reoperation, primary treatment failure, mortality, and quality-of-life parameters. Results A total of 17 retrospective studies with 2.069 patients met the inclusion criteria. 1.378 patients received surgical treatment with or without instrumentation; 676 patients were treated non-surgically. For the comparison of instrumented to non-instrumented surgery Odds-Ratios were .98 (P = .95) for infection recurrence, .83 (P = .92) for primary failure, .53 (P = .02) for mortality and .32 (P = .05) for reoperation. For the comparison of non-surgical to surgical treatment, Odds-Ratios were .98 (P = .95) for infection recurrence, and 1.05 (P = .89) for mortality. Conclusion Available data support that instrumented surgery can be performed safely without higher rates of infection recurrence or primary failure and lower reoperation and mortality rates compared to nonsurgical treatment for DNSI. Furthermore, spine surgical treatment may generally be performed without higher risk of infection recurrence and mortality and better quality-of-life outcomes compared to generic non-surgical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.