SummaryTranslational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem±loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem±loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.
Objectives The primary objective of this study was to elucidate mechanisms underlying the link between vitamin D status and cardiovascular disease by exploring the relationship between 25-hydroxyvitamin D (25-OH D), an established marker of vitamin D status, and vascular function in healthy adults. Background Mechanisms underlying vitamin D deficiency-mediated increased risk of cardiovascular disease remain unknown. Vitamin D influences endothelial and smooth muscle cell function, mediates inflammation, and modulates the renin-angiotensin-aldosterone axis. We investigated the relationship between vitamin D status and vascular function in humans, with the hypothesis that vitamin D insufficiency will be associated with increased arterial stiffness and abnormal vascular function. Methods We measured serum 25-OH D in 554 subjects. Endothelial function was assessed as brachial artery flow-mediated dilation, and microvascular function was assessed as digital reactive hyperemia index. Carotid-femoral pulse wave velocity and radial tonometry-derived central augmentation index and subendocardial viability ratio were measured to assess arterial stiffness. Results Mean 25-OH D was 31.8 ± 14 ng/ml. After adjustment for age, sex, race, body mass index, total cholesterol, low-density lipoprotein, triglycerides, C-reactive protein, and medication use, 25-OH D remained independently associated with flow-mediated vasodilation (β = 0.1, p = 0.03), reactive hyperemia index (β = 0.23, p < 0.001), pulse wave velocity (β = −0.09, p = 0.04), augmentation index (β = −0.11, p = 0.03), and subendocardial viability ratio (β = 0.18, p = 0.001). In 42 subjects with vitamin D insufficiency, normalization of 25-OH D at 6 months was associated with increases in reactive hyperemia index (0.38 ± 0.14, p = 0.009) and subendocardial viability ratio (7.7 ± 3.1, p = 0.04), and a decrease in mean arterial pressure (4.6 ± 2.3 mm Hg, p = 0.02). Conclusions Vitamin D insufficiency is associated with increased arterial stiffness and endothelial dysfunction in the conductance and resistance blood vessels in humans, irrespective of traditional risk burden. Our findings provide impetus for larger trials to assess the effects of vitamin D therapy in cardiovascular disease.
Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem-loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.