Members of the semaphorin family of secreted and transmembrane proteins utilize plexins as neuronal receptors to signal repulsive axon guidance. It remains unknown how plexin proteins are directly linked to the regulation of cytoskeletal dynamics. Here, we show that Drosophila MICAL, a large, multidomain, cytosolic protein expressed in axons, interacts with the neuronal plexin A (PlexA) receptor and is required for Semaphorin 1a (Sema-1a)-PlexA-mediated repulsive axon guidance. In addition to containing several domains known to interact with cytoskeletal components, MICAL has a flavoprotein monooxygenase domain, the integrity of which is required for Sema-1a-PlexA repulsive axon guidance. Vertebrate orthologs of Drosophila MICAL are neuronally expressed and also interact with vertebrate plexins, and monooxygenase inhibitors abrogate semaphorin-mediated axonal repulsion. These results suggest a novel role for oxidoreductases in repulsive neuronal guidance.
How instructive cues present on the cell surface have their precise effects on the actin cytoskeleton is poorly understood. Semaphorins are one of the largest families of these instructive cues and are widely studied for their effects on cell movement, navigation, angiogenesis, immunology and cancer1. Semaphorins/collapsins were characterized in part on the basis of their ability to drastically alter actin cytoskeletal dynamics in neuronal processes2, but despite considerable progress in the identification of semaphorin receptors and their signalling pathways3, the molecules linking them to the precise control of cytoskeletal elements remain unknown. Recently, highly unusual proteins of the Mical family of enzymes have been found to associate with the cytoplasmic portion of plexins, which are large cell-surface semaphorin receptors, and to mediate axon guidance, synaptogenesis, dendritic pruning and other cell morphological changes4–7. Mical enzymes perform reduction–oxidation (redox) enzymatic reactions4,5,8–10 and also contain domains found in proteins that regulate cell morphology4,11. However, nothing is known of the role of Mical or its redox activity in mediating morphological changes. Here we report that Mical directly links semaphorins and their plexin receptors to the precise control of actin filament (F-actin) dynamics. We found that Mical is both necessary and sufficient for semaphorin–plexin-mediated F-actin reorganization in vivo. Likewise, we purified Mical protein and found that it directly binds F-actin and disassembles both individual and bundled actin filaments. We also found that Mical utilizes its redox activity to alter F-actin dynamics in vivo and in vitro, indicating a previously unknown role for specific redox signalling events in actin cytoskeletal regulation. Mical therefore is a novel F-actin-disassembly factor that provides a molecular conduit through which actin reorganization—a hallmark of cell morphological changes including axon navigation—can be precisely achieved spatiotemporally in response to semaphorins.
Different types of cell behavior including growth, motility, and navigation require actin proteins to assemble into filaments. Here, we describe a biochemical process that was able to disassemble actin filaments and limit their reassembly. Actin was a specific substrate of the multi-domain oxidation-reduction (Redox) enzyme, Mical, a poorly-understood actin disassembly factor that directly responds to Semaphorin/Plexin extracellular repulsive cues. Actin filament subunits were directly modified by Mical on their conserved pointed-end that is critical for filament assembly. Mical post-translationally oxidized the methionine 44 residue within the D-loop of actin, simultaneously severing filaments and decreasing polymerization. This mechanism underlying actin cytoskeletal collapse may have broad physiological and pathological ramifications.
Actin's polymerization properties are dramatically altered by oxidation of its conserved methionine (Met)-44 residue. Mediating this effect is a specific oxidation-reduction (Redox) enzyme, Mical, that works with Semaphorin repulsive guidance cues and selectively oxidizes Met-44. We now find that this actin regulatory process is reversible. Employing a genetic approach, we identified a specific methionine sulfoxide reductase enzyme SelR that opposes Mical Redox activity and Semaphorin/Plexin repulsion to direct multiple actin-dependent cellular behaviors in vivo. SelR specifically catalyzes the reduction of the R-isomer of methionine sulfoxide (methionine-R-sulfoxide) to methionine, and we found that SelR directly reduced Mical-oxidized actin, restoring its normal polymerization properties. These results indicate that Mical oxidizes actin stereo-specifically to generate actin Met-44-R-sulfoxide (actinMet(R)O-44) – and they also implicate the interconversion of specific Met/Met(R)O residues as a precise means to modulate protein function. Our results therefore uncover a specific reversible Redox actin regulatory system that controls cell and developmental biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.