We report the first concurrent determination of conductance (G) and thermopower (S) of single-molecule junctions via direct measurement of electrical and thermoelectric currents using a scanning tunneling microscope-based break-junction technique. We explore several amine-Au and pyridine-Au linked molecules that are predicted to conduct through either the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO), respectively. We find that the Seebeck coefficient is negative for pyridine-Au linked LUMO-conducting junctions and positive for amine-Au linked HOMO-conducting junctions. Within the accessible temperature gradients (<30 K), we do not observe a strong dependence of the junction Seebeck coefficient on temperature. From histograms of thousands of junctions, we use the most probable Seebeck coefficient to determine a power factor, GS(2), for each junction studied, and find that GS(2) increases with G. Finally, we find that conductance and Seebeck coefficient values are in good quantitative agreement with our self-energy corrected density functional theory calculations.
Charge transport across metal-molecule interfaces has an important role in organic electronics. Typically, chemical link groups such as thiols or amines are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal-carbon coupling has been shown through C60, benzene and π-stacked benzene, but ideally the carbon backbone of the molecule should be covalently bonded to the electrode without intervening link groups. Here, we demonstrate a method to create junctions with such contacts. Trimethyl tin (SnMe(3))-terminated polymethylene chains are used to form single-molecule junctions with a break-junction technique. Gold atoms at the electrode displace the SnMe(3) linkers, leading to the formation of direct Au-C bonded single-molecule junctions with a conductance that is ∼100 times larger than analogous alkanes with most other terminations. The conductance of these Au-C bonded alkanes decreases exponentially with molecular length, with a decay constant of 0.97 per methylene, consistent with a non-resonant transport mechanism. Control experiments and ab initio calculations show that high conductances are achieved because a covalent Au-C sigma (σ) bond is formed. This offers a new method for making reproducible and highly conducting metal-organic contacts.
Supporting information placeholder ABSTRACT:We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ resulting in formation of a direct covalent sigma bond between the carbon backbone and the gold metal electrodes. The molecular carbon backbone used in this study consist of a conjugated system that has one terminal methylene group on each end, which bonds to the electrodes, achieving large electronic coupling of the electrodes to the system. The junctions formed with the prototypical example of 1,4-dimethylenebenzene show a conductance approaching one conductance quantum (G 0 = 2e 2 /h). Junctions formed with methylene terminated oligophenyls with two to four phenyl units show a hundred-fold increase in conductance compared with junctions formed with amine-linked oligophenyls. The conduction mechanism for these longer oligophenyls is tunneling as they exhibit an exponential dependence of conductance with oligomer length. In addition, density functional theory based calculations for the Au-xylylene-Au junction show nearresonant transmission with a cross-over to tunneling for the longer oligomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.