An important task in astroparticle physics is the detection of periodicities in irregularly sampled time series, called light curves. The classic Fourier periodogram cannot deal with irregular sampling and with the measurement accuracies that are typically given for each observation of a light curve. Hence, methods to fit periodic functions using weighted regression were developed in the past to calculate periodograms.We present the R package RobPer which allows to combine different periodic functions and regression techniques to calculate periodograms. Possible regression techniques are least squares, least absolute deviations, least trimmed squares, M-, S-and τ -regression. Measurement accuracies can be taken into account including weights. Our periodogram function covers most of the approaches that have been tried earlier and provides new model-regression-combinations that have not been used before.To detect valid periods, RobPer applies an outlier search on the periodogram instead of using fixed critical values that are theoretically only justified in case of least squares regression, independent periodogram bars and a null hypothesis allowing only normal white noise. Finally, the package also includes a generator to generate artificial light curves.
Perfluorooctanoic acid (PFOA) and related chemicals among the per- and polyfluoroalkyl substances are widely distributed in the environment. Adverse health effects may occur even at low exposure levels. A large-scale contamination of drinking water resources, especially the rivers Möhne and Ruhr, was detected in North Rhine-Westphalia, Germany, in summer 2006. As a result, concentration data are available from the water supply stations along these rivers and partly from the water network of areas supplied by them. Measurements started after the contamination’s discovery. In addition, there are sparse data from stations in other regions. Further information on the supply structure (river system, station-to-area relations) and expert statements on contamination risks are available. Within the first state-wide environmental-epidemiological study on the general population, these data are temporally and spatially modelled to assign estimated exposure values to the resident population. A generalized linear model with an inverse link offers consistent temporal approaches to model each station’s PFOA data along the river Ruhr and copes with a steeply decreasing temporal data pattern at mainly affected locations. The river’s segments between the main junctions are the most important factor to explain the spatial structure, besides local effects. Deductions from supply stations to areas and, therefore, to the residents’ risk are possible via estimated supply proportions. The resulting potential correlation structure of the supply areas is dominated by the common water supply from the Ruhr. Other areas are often isolated and, therefore, need to be modelled separately. The contamination is homogeneous within most of the areas.
Short-read 16 S rRNA gene sequencing is the dominating technology to profile microbial communities in different habitats. Its uncontested taxonomic resolution paved the way for major contributions to the field. Sample measurement and analysis, that is, sequencing, is rather slow-in order of days. Alternatively, flow cytometry can be used to profile the microbiota of various sources within a few minutes per sample. To keep up with high measurement speed, we developed the open sourceanalyzing tool FlowSoFine. To validate the ability to distinguish microbial profiles, we examined human skin samples of three body sites (N = 3 Â 54) with flow cytometry and 16 S rRNA gene amplicon sequencing. Confirmed by sequencing of the very same samples, body site was found to be significantly different by flow cytometry.For a proof-of-principle multidimensional approach, using stool samples of patients (N = 40) with/without inflammatory bowel diseases, we could discriminate the health status by their bacterial patterns. In conclusion, FlowSoFine enables the generation and comparison of cytometric fingerprints of microbial communities from different sources. The implemented interface supports the user through all analytical steps to work out the biological relevant signals from raw measurements to publication ready figures. Furthermore, we present flow cytometry as a valid method for skin microbiota analysis.
In this article, we analyze perinatal data with birth weight (BW) as primarily interesting response variable. Gestational age (GA) is usually an important covariate and included in polynomial form. However, in opposition to this univariate regression, bivariate modeling of BW and GA is recommended to distinguish effects on each, on both, and between them. Rather than a parametric bivariate distribution, we apply conditional copula regression, where marginal distributions of BW and GA (not necessarily of the same form) can be estimated independently, and where the dependence structure is modeled conditional on the covariates separately from these marginals. In the resulting distributional regression models, all parameters of the two marginals and the copula parameter are observation-specific. Besides biometric and obstetric information, data on drinking water contamination and maternal smoking are included as environmental covariates. While the Gaussian distribution is suitable for BW, the skewed GA data are better modeled by the three-parametric Dagum distribution. The Clayton copula performs better than the Gumbel and the symmetric Gaussian copula, indicating lower tail dependence (stronger dependence when both variables are low), although this nonlinear dependence between BW and GA is surprisingly weak and only influenced by Cesarean section. A non-linear trend of BW on GA is detected by a classical univariate model that is polynomial with respect to the effect of GA. Linear effects on BW mean are similar in both models, while our distributional copula regression also reveals covariates' effects on all other parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.