Nanosized titanium dioxide (TiO) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO, a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO ingestion resulted in decreased body size and glucose content. The results suggest that TiO nanoparticles alter glucose transport across the intestinal epithelium, and that TiO nanoparticle ingestion may have physiological consequences.
Bioprinting of engineered bacteria is of great interest for applications of synthetic biology in the context of living biomaterials, but so far, only a few viable approaches are available for the printing of gels hosting live Escherichia coli bacteria. Here, we develop a gentle extrusionbased bioprinting method based on an inexpensive alginate/agarose ink mixture that enables printing of E. coli into three-dimensional hydrogel structures up to 10 mm in height. We first characterize the rheological properties of the gel ink and then study the growth of the bacteria inside printed structures. We show that the maturation of fluorescent proteins deep within the printed structures can be facilitated by the addition of a calcium peroxide-based oxygen generation system. We then utilize the bioprinter to control different types of interactions between bacteria that depend on their spatial position. We next show quorum-sensing-based chemical communication between the engineered sender and receiver bacteria placed at different positions inside the bioprinted structure and finally demonstrate the fabrication of barrier structures defined by nonmotile bacteria that can guide the movement of chemotactic bacteria inside a gel. We anticipate that a combination of 3D bioprinting and synthetic biological approaches will lead to the development of living biomaterials containing engineered bacteria as dynamic functional units.
Bioprinting of engineered bacteria is of great interest for applications of synthetic biology in the context of living biomaterials, but so far only few viable approaches are available for the printing of gels hosting live Escherichia coli bacteria. Here we develop a gentle bioprinting method based on an alginate/agarose bioink that enables precise printing of E.coli into three-dimensional hydrogel structures up to 10 mm in height. Addition of a calcium peroxide-based oxygen generation system enables maturation of fluorescent proteins deep within the printed structures. We utilize spatial patterning with the bioprinter to control different types of chemical interaction between bacteria. We first show quorum sensing-based chemical communication between engineered sender and receiver bacteria placed at different positions inside the bioprint, and then demonstrate the fabrication of barrier structures defined by non-motile bacteria that can guide the movement of chemotactic bacteria inside a gel.
An in vitro model of the small intestinal epithelium was utilized to model changes in glucose transport caused by exposure to 30 nm titanium dioxide nanoparticles. Glucose transport across the intestinal model was significantly lower with exposure to titanium dioxide nanoparticles. In the presence of the beneficial bacterium L. rhamnosus, however, these changes were no longer observed. These results could be significant, as changes in glucose absorption are associated with metabolic syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.