We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.Membranes are fundamental components of a wide variety of physical, chemical, and biological systems, used in everything from cellular compartmentalization to mechanical pressure sensing. They divide space into two regions, each capable of possessing different physical or chemical properties. A simple example is the stretched surface of a balloon, where a pressure difference across the balloon is balanced by the surface tension in the membrane. Graphene, a single layer of graphite, is the ultimate limit: a chemically stable and electrically conducting membrane one atom in thickness. 1-3 An interesting question is whether such an atomic membrane can be impermeable to atoms, molecules and ions. In this letter, we address this question for gases. We show that these membranes are impermeable and can support pressure differences larger than one atmosphere. We use such pressure differences to tune the mechanical resonance frequency by ∼100 MHz. This allows us to measure the mass and elastic constants of graphene membranes. We demonstrate that atomic layers of graphene have stiffness similar to bulk graphite (E ∼ 1 TPa). These results show that single atomic sheets can be integrated with microfabricated structures to create a new class of atomic scale membrane-based devices.A schematic of the device geometry used heresa graphene-sealed microchambersis shown in Figure 1a. Graphene sheets are suspended over predefined wells in silicon oxide using mechanical exfoliation (see Supporting Information). Each graphene membrane is clamped on all sides by the van der Waals force between the graphene and SiO 2 , creating a ∼(µm) 3 volume of confined gas. The inset of Figure 1a shows an optical image of a single layer graphene sheet forming a sealed square drumhead with a width W ) 4.75 µm on each side. Raman spectroscopy was used to confirm that this graphene sheet was a single layer in thickness. [4][5][6] Chambers with graphene thickness from 1 to ∼75 layers were studied.After initial fabrication, the pressure inside the microchamber, p int , is atmospheric pressure (101 kPa). If the pressure external to the chamber, p ext , is changed, we found that p int will equilibrate to p ext on a time scale that ranges from minutes to days, depending on the gas species and the temperature. On shorter time scales than this equilibration time, a significant pressure difference ∆p ) p int -p ext can exist across the membrane, causing it to stretch like the surface of a balloon (Figure 1b). Examples are shown for ∆p > 0 in Figure 1c and ∆p < 0 in Figure 1d.To create a positive pressure difference, ∆p > 0, as shown in Figure 1c, we place a s...
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.
We investigate the optoelectronic response of a graphene interface junction, formed with bilayer and single-layer graphene, by photocurrent (PC) microscopy. We measure the polarity and amplitude of the PC while varying the Fermi level by tuning a gate voltage. These measurements show that the generation of PC is by a photo-thermoelectric effect. The PC displays a factor of ∼10 increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power has a linear dependence on the temperature, the inferred graphene thermal conductivity from temperature dependent measurements has a T 1.5 dependence below ∼100 K, which agrees with recent theoretical predictions.
Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene [Oostinga JB, et al. (2007) Nature Materials 7:151-157]. This band gap is intimately tied to a structural spontaneous symmetry breaking in bilayer graphene, where one of the graphene layers shifts by an atomic spacing with respect to the other. This shift can happen in multiple directions, resulting in multiple stacking domains with soliton-like structural boundaries between them. Theorists have recently proposed that novel electronic states exist at these boundaries [Vaezi A, et al. (2013) arXiv:1301.1690Zhang F, et al. (2013) arXiv:1301], but very little is known about their structural properties. Here we use electron microscopy to measure with nanoscale and atomic resolution the widths, motion, and topological structure of soliton boundaries and related topological defects in bilayer graphene. We find that each soliton consists of an atomic-scale registry shift between the two graphene layers occurring over 6-11 nm. We infer the minimal energy barrier to interlayer translation and observe soliton motion during in situ heating above 1,000°C. The abundance of these structures across a variety of samples, as well as their unusual properties, suggests that they will have substantial effects on the electronic and mechanical properties of bilayer graphene.domain wall | TEM | stacking faults | STEM S pontaneous symmetry breaking, where the ground state of a system has lower symmetry than the underlying Hamiltonian, occurs in systems ranging from magnetism in solids to the Higgs mechanism in high-energy physics. It leads to multiply degenerate ground states, each with a different "broken" symmetry labeled by an order parameter. In the case of a magnet, the spins locally align, creating a magnetization that plays the role of the order parameter. However, the global orientation of the magnetization can be in one of many directions, determined, for example, by the crystal axes. Locally, the system "spontaneously" chooses one such direction based on external constraints or history. Different local regions can have different orientations, and the boundary between adjacent regions is called a domain wall. Mathematically, this boundary takes the form of a soliton that is finite in width but free to move. Other, more complex topological structures are also possible.The stacking of two graphene sheets exhibits analogous physics. Fig. 1A shows the energy of bilayer graphene as a function of the relative in-plane displacement u between the two graphene sheets, which we will use as a continuous-order parameter (1). The energy as a function of u is maximal in the high-symmetry state (u = 0) where one layer is directly on top of the other, called AA stacking (Fig. 1 A, center and B, edges). Away from u = 0 are six ener...
We fabricated large arrays of suspended, single-layer graphene membrane resonators using chemical vapor deposition (CVD) growth followed by patterning and transfer. We measure the resonators using both optical and electrical actuation and detection techniques. We find that the resonators can be modeled as flat membranes under tension, and that clamping the membranes on all sides improves agreement with our model and reduces the variation in frequency between identical resonators. The resonance frequency is tunable with both electrostatic gate voltage and temperature, and quality factors improve dramatically with cooling, reaching values up to 9000 at 10 K. These measurements show that it is possible to produce large arrays of CVD-grown graphene resonators with reproducible properties and the same excellent electrical and mechanical properties previously reported for exfoliated graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.