We report two cases of Amyand's hernia, which is the development of acute appendicitis within an inguinal hernia. Both patients were clinically thought to have incarcerated inguinal hernias, but were correctly prospectively diagnosed as having Amyand's hernia on the basis of preoperative computed tomography (CT) examinations. Our cases again show the utility of CT of the acute abdomen and pelvis in revealing a previously unsuspected diagnosis and rapidly triaging patients to the appropriate management.
Angiogenesis is essential to both normal and pathological bone physiology. Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis, whereas transforming growth factor-β1 (TGF-β1) modulates bone differentiation, matrix formation, and cytokine expression. The purpose of this study was to investigate the relationship between TGF-β1 and VEGF expression in osteoblasts and osteoblast-like cells. Northern blot analysis revealed an early peak of VEGF mRNA (6-fold at 3 h) in fetal rat calvarial cells and MC3T3-E1 osteoblast-like cells after stimulation with TGF-β1 (2.5 ng/ml). The stability of VEGF mRNA in MC3T3-E1 cells was not increased after TGF-β1 treatment. Actinomycin D inhibited the TGF-β1-induced peak in VEGF mRNA, whereas cycloheximide did not. Blockade of TGF-β1 signal transduction via a dominant-negative receptor II adenovirus significantly decreased TGF-β1 induction of VEGF mRNA. Additionally, TGF-β1 induced a dose-dependent increase in VEGF protein expression by MC3T3-E1 cells ( P < 0.01). Dexamethasone similarly inhibited VEGF protein expression. Both TGF-β1 mRNA and VEGF mRNA were concurrently present in rat membranous bone, and both followed similar patterns of expression during rat mandibular fracture healing (mRNA and protein). In summary, TGF-β1-induced VEGF expression by osteoblasts and osteoblast-like cells is a dose-dependent event that may be intimately related to bone development and fracture healing.
The ability of newborns and immature animals to reossify calvarial defects has been well described. This capacity is generally lost in children greater than 2 years of age and in mature animals. The dura mater has been implicated as a regulator of calvarial reossification. To date, however, few studies have attempted to identify biomolecular differences in the dura mater that enable immature, but not mature, dura to induce osteogenesis. The purpose of these studies was to analyze metabolic characteristics, protein/gene expression, and capacity to form mineralized bone nodules of cells derived from immature and mature dura mater. Transforming growth factor beta-1, basic fibroblast growth factor, collagen type IalphaI, osteocalcin, and alkaline phosphatase are critical growth factors and extracellular matrix proteins essential for successful osteogenesis. In this study, we have characterized the proliferation rates of immature (6-day-old rats, n = 40) and mature (adult rats, n = 10) dura cell cultures. In addition, we analyzed the expression of transforming growth factor beta-1, basic fibroblast growth factor-2, proliferating cell nuclear antigen, and alkaline phosphatase. Our in vitro findings were corroborated with Northern blot analysis of mRNA expression in total cellular RNA isolated from snap-frozen age-matched dural tissues (6-day-old rats, n = 60; adult rats, n = 10). Finally, the capacity of cultured dural cells to form mineralized bone nodules was assessed. We demonstrated that immature dural cells proliferate significantly faster and produce significantly more proliferating cell nuclear antigen than mature dural cells (p < 0.01). Additionally, immature dural cells produce significantly greater amounts of transforming growth factor beta-1, basic fibroblast growth factor-2, and alkaline phosphatase (p < 0.01). Furthermore, Northern blot analysis of RNA isolated from immature and mature dural tissues demonstrated a greater than 9-fold, 8-fold, and 21-fold increase in transforming growth factor beta-1, osteocalcin, and collagen IalphaI gene expression, respectively, in immature as compared with mature dura mater. Finally, in keeping with their in vivo phenotype, immature dural cells formed large calcified bone nodules in vitro, whereas mature dural cells failed to form bone nodules even with extended culture. These studies suggest that differential expression of growth factors and extracellular matrix molecules may be a critical difference between the osteoinductive capacity of immature and mature dura mater. Finally, we believe that the biomolecular bone- and matrix-inducing phenotype of immature dura mater regulates the ability of young children and immature animals to heal calvarial defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.