Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some higher eukaryotes but their presence was generally considered rare. Here we developed a long-read sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum. We found genome-wide prevalence of polycistronic transcription in these Agaricomycetes, involving up to 8% of the transcribed genes. Unlike polycistronic mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed. We show that polycistronic transcription may interfere with expression of the downstream tandem gene. Further comparative genomic analysis indicates that polycistronic transcription is conserved among a wide range of mushroom forming fungi. In summary, our study revealed, for the first time, the genome prevalence of polycistronic transcription in a phylogenetic range of higher fungi. Furthermore, we systematically show that our long-read sequencing approach and combined bioinformatics pipeline is a generic powerful tool for precise characterization of complex transcriptomes that enables identification of mRNA isoforms not recovered via short-read assembly.
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin-and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.B rown rot wood-degrading fungi release sequestered carbon from lignocellulose in forests (1) and have the unique ability to accomplish this without significantly removing the recalcitrant lignin that encases the structural polysaccharides. Accordingly, their decay mechanisms may provide a model for new biomass conversion technologies that not only function despite the presence of lignin but also yield lignin as a potentially useful coproduct (1-3). Deviating from their white rot ancestors, brown rot fungi have evolved mechanisms that are generally faster (4, 5) and more polysaccharide-specific because they circumvent lignin (4,(6)(7)(8). This enhanced efficiency is coupled with losses, not expansions, of key white rot genes, including many linked to lignin degradation and processive cellulose hydrolysis. For example, few brown rot fungi produce the cellobiohydrolases that are included in commercial synergistic glycoside hydrolase (GH) mixtures (9-12). These observations imply that brown rot fungi harbor novel pathways to improve saccharification yields.To explain why brown rot fungi are so efficient, despite their minimal toolkit of biodegradative enzymes, low-molecular-weight (LMW) oxidative agents have been proposed to operate in tandem with the enzymes. ...
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
Summary Priority effects among wood decomposers have been demonstrated by manipulating fungal assembly history via inoculations in dead wood and then tracking community development using DNA sequencing. Individual wood‐degrading fungi have been shown, however, to initiate decay after having colonized living trees as endophytes. To track these ‘upstream’ colonizers across the endophyte–saprophyte transition, we coupled high‐throughput sequencing with wood physiochemical analyses in stem sections extracted from healthy birch trees (Betula papyrifera; 4–7 cm dia.). We incubated wood in microcosms, limiting communities as endophytes−only or challenging endophytes with Fomes fomentarius or Piptoporus betulinus at high exogenous inoculum potential. Initial fungal richness in birch stems averaged 143 OTUs and decreased nearly threefold after five months of decomposition. Although F. fomentarius successfully colonized some stem sections incubated at 25 °C, decayed wood was generally dominated by saprophytic fungi that were present originally in lower abundances as endophytes. Among saprophytes, fungi in the brown rot functional guild consistently dominated, matching wood residues bearing the chemical hallmarks of brown rot. Despite this functionally redundant outcome, the taxa that rose to dominate in individual sections varied. Surprisingly, the brown rot taxa dominating wood decomposition were better known for lumber degradation rather than log decay in ground contact. Given the isolation from colonizers in our design, this redundancy of brown rot as the outcome suggests that these taxa and more generally brown rot fungi could have adapted to decompose wood where there is lower competitive pressure. Competitive avoidance would complement the diffuse depolymerization mechanisms of brown rot fungi, which are likely more prone to sugar pilfering by other organisms than the processive depolymerization mechanisms of white rot fungi. Overall, this guild‐level predictability of fungal endophyte development and consequence is encouraging given the challenges of predicting wood decomposition, and it provides a base for testing these dynamics under increasing natural complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.