The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite. ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|
Exploring large environmental datasets generated by high-throughput DNA sequencing technologies requires new analytical approaches to move beyond the basic inventory descriptions of the composition and diversity of natural microbial communities. In order to investigate potential interactions between microbial taxa, network analysis of significant taxon co-occurrence patterns may help to decipher the structure of complex microbial communities across spatial or temporal gradients. Here, we calculated associations between microbial taxa and applied network analysis approaches to a 16S rRNA gene barcoded pyrosequencing dataset containing 4160 000 bacterial and archaeal sequences from 151 soil samples from a broad range of ecosystem types. We described the topology of the resulting network and defined operational taxonomic unit categories based on abundance and occupancy (that is, habitat generalists and habitat specialists). Co-occurrence patterns were readily revealed, including general non-random association, common life history strategies at broad taxonomic levels and unexpected relationships between community members. Overall, we demonstrated the potential of exploring inter-taxa correlations to gain a more integrated understanding of microbial community structure and the ecological rules guiding community assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.