In a ubiquitous environment, high-accuracy data analysis is essential because it affects real-world decision-making. However, in the real world, user-related data from information systems are often missing due to users’ concerns about privacy or lack of obligation to provide complete data. This data incompleteness can impair the accuracy of data analysis using classification algorithms, which can degrade the value of the data. Many studies have attempted to overcome these data incompleteness issues and to improve the quality of data analysis using classification algorithms. The performance of classification algorithms may be affected by the characteristics and patterns of the missing data, such as the ratio of missing data to complete data. We perform a concrete causal analysis of differences in performance of classification algorithms based on various factors. The characteristics of missing values, datasets, and imputation methods are examined. We also propose imputation and classification algorithms appropriate to different datasets and circumstances.
This study empirically investigates the factors affecting compliance with robot requests in task-oriented environments such as registration guide services in a hospital setting in which compliance is important for patient treatment. We examine the relative impact of interaction time, task understanding, and homophily on compliance. The results suggest that task understanding and interaction time are negatively related with intention to comply. However, homophily is not significantly related to intention to comply.
․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․Overall, accuracy as a performance measure does not fully consider modular accuracy: the accuracy of classifying 1 (or true) as 1 is not same as classifying 0 (or false) as 0. A smarter classification algorithm would optimize the classification rules to match the modular accuracies' goals according to the nature of problem. Correspondingly, smarter algorithms must be both more generalized with respect to the nature of problems, and free from decretization, which may cause distortion of the real performance. Hence, in this paper, we propose a novel vertical boosting algorithm that improves modular accuracies. Rather than decretizing items, we use simple classifiers such as a regression model that accepts continuous data types. To improve the generalization, and to select a classification model that is well-suited to the nature of the problem domain, we developed a model selection algorithm with smartness. To show the soundness of the proposed method, we performed an experiment with a real-world application: predicting the intellectual properties of e-transaction technology, which had a 47,000+ record data set.
․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.