We report on capacitance-voltage spectroscopy of self-assembled InAs quantum dots under constant illumination. Besides the electronic and excitonic charging peaks in the spectrum reported earlier, we find additional resonances associated with nonequilibrium state tunneling unseen in C(V) measurements before. We derive a master-equation based model to assign the corresponding quantum state tunneling to the observed peaks. C(V) spectroscopy in a magnetic field is used to verify the model-assigned nonequilibrium peaks. The model is able to quantitatively address various experimental findings in C(V) spectroscopy of quantum dots such as the frequency and illumination dependent peak height, a thermal shift of the tunneling resonances and the occurrence of the additional nonequilibrium peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.