ObjectiveThere is strong evidence for an involvement of different classes of non-coding RNAs, including microRNAs and long non-coding RNAs, in the regulation of β-cell activities and in diabetes development. Circular RNAs were recently discovered to constitute a substantial fraction of the mammalian transcriptome but the contribution of these non-coding RNAs in physiological and disease processes remains largely unknown. The goal of this study was to identify the circular RNAs expressed in pancreatic islets and to elucidate their possible role in the control of β-cells functions.MethodsWe used a microarray approach to identify circular RNAs expressed in human islets and searched their orthologues in RNA sequencing data from mouse islets. We then measured the level of four selected circular RNAs in the islets of different Type 1 and Type 2 diabetes models and analyzed the role of these circular transcripts in the regulation of insulin secretion, β-cell proliferation, and apoptosis.ResultsWe identified thousands of circular RNAs expressed in human pancreatic islets, 497 of which were conserved in mouse islets. The level of two of these circular transcripts, circHIPK3 and ciRS-7/CDR1as, was found to be reduced in the islets of diabetic db/db mice. Mimicking this decrease in the islets of wild type animals resulted in impaired insulin secretion, reduced β-cell proliferation, and survival. ciRS-7/CDR1as has been previously proposed to function by blocking miR-7. Transcriptomic analysis revealed that circHIPK3 acts by sequestering a group of microRNAs, including miR-124-3p and miR-338-3p, and by regulating the expression of key β-cell genes, such as Slc2a2, Akt1, and Mtpn.ConclusionsOur findings point to circular RNAs as novel regulators of β-cell activities and suggest an involvement of this novel class of non-coding RNAs in β-cell dysfunction under diabetic conditions.
Highlights d Mice and humans show daily variance in exercise capacity d Exercise intensity and clock proteins affect daytime variance in exercise capacity d Exercise elicits distinct daytime muscle transcriptomic and metabolic signature d ZMP, an AMPK activator, is induced by exercise in a daytimedependent manner
Daily rhythms in animal physiology are driven by endogenous circadian clocks in part through rest-activity and feeding-fasting cycles. Here, we examined principles that govern daily respiration. We monitored oxygen consumption and carbon dioxide release, as well as tissue oxygenation in freely moving animals to specifically dissect the role of circadian clocks and feeding time on daily respiration. We found that daily rhythms in oxygen and carbon dioxide are clock-controlled and that time-restricted feeding restores their rhythmicity in clock-deficient mice. Remarkably, day-time feeding dissociated oxygen rhythms from carbon dioxide oscillations, whereby oxygen followed activity and carbon dioxide was shifted and aligned with food intake. In addition, changes in carbon dioxide levels altered clock gene expression and phase-shifted the clock. Collectively, our findings indicate that oxygen and carbon dioxide rhythms are clock-controlled and feeding-regulated, and support a potential role for carbon dioxide in phase resetting of peripheral clocks upon feeding.
SignificanceRhythms in gene expression propelled by the circadian clock and environmental signals are ubiquitous across cells and tissues. In particular, in mouse tissues, thousands of transcripts show oscillations with a period of 24 hours. Keys question are how such rhythms propagate and eventually exert functions, but also how these are generated. Here, we developed a mathematical model based on total RNA-seq to classify genes according to the respective contributions of transcriptional and posttranscriptional regulation toward mRNA expression profiles. We found that about one-third of rhythmically accumulating mRNA are under posttranscriptional regulation. Such regulation is only partially dependent on the circadian clock, showing that systemic pathways and feeding patterns contribute important posttranscriptional control of gene expression in liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.