Activity-dependent changes in synaptic strength have long been postulated as cellular correlates of learning and memory. Long-term potentiation (LTP), a well characterized form of synaptic plasticity, is often expressed as an increase in the number of postsynaptic AMPAtype glutamate receptors (AMPARs). Although the precise molecular mechanisms governing LTP remain elusive, this study identifies one member of the sorting nexin family, Sorting Nexin 27 (SNX27), as a critical component in this process. The ability of sorting nexins to bind specific phospholipids as well as their propensity to form protein-protein complexes, points to a role for these proteins in membrane trafficking and protein sorting. Here, we demonstrate that SNX27 binds to AMPARs, and that this interaction is regulated in an activity-dependent manner. Furthermore, we provide evidence that SNX27 is synaptically enriched and its level of expression regulates targeting of AMPARs to the neuronal surface. Loss of SNX27 abolishes recruitment of surface AMPARs during chemical LTP. Collectively, our data suggest a role for SNX27 in modulating synaptic plasticity through regulated interaction with AMPARs.PX domain | postsynaptic density | proteomics | PDZ-domain
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.