This paper outlines the story of the inventions and discoveries that directly relate to the genesis and development of electrostatic production and drawing of fibres: electrospinning. Current interest in the process is due to the ease with which nano-scale fibers can be produced in the laboratory. In 1600, the first record of the electrostatic attraction of a liquid was observed by William Gilbert. Christian Friedrich Schönbein produced highly nitrated cellulose in 1846. In 1887 Charles Vernon Boys described the process in a paper on nano-fiber manufacture. John Francis Cooley filed the first electrospinning patent in 1900. In 1914 John Zeleny published work on the behaviour of fluid droplets at the end of metal capillaries. His effort began the attempt to mathematically model the behavior of fluids under electrostatic forces. Between 1931 and 1944 Anton Formhals took out at least 22 patents on electrospinning. In 1938, N.D. Rozenblum and I.V. Petryanov-Sokolov generated electrospun fibers, which they developed into filter materials. Between 1964 and 1969 Sir Geoffrey Ingram Taylor produced the beginnings of a theoretical underpinning of electrospinning by mathematically modelling the shape of the (Taylor) cone formed by the fluid droplet under the effect of an electric field. In the early 1990s several research groups (notably that of Reneker who popularised the name electrospinning) demonstrated electrospun nano-fibers. Since 1995, the number of publications about electrospinning has been increasing exponentially every year.
Accelerometry-derived exercise dose (intensity × duration) was assessed throughout a competitive basketball season. Nine elite basketballers wore accelerometers during a Yo-Yo intermittent recovery test (Yo-Yo-IR1) and during three two-week blocks of training that represented phases of the season defined as easy, medium, and hard based on difficulty of match schedule. Exercise dose was determined using accumulated impulse (accelerometry-derived average net force × duration). Relative exercise intensity was quantified using linear relationships between average net force and oxygen consumption during the Yo-Yo-IR1. Time spent in different intensity zones was computed. Influences of match schedule difficulty and playing position were evaluated. Exercise dose reduced for recovery and pre-match tapering sessions during the medium match schedule. Exercise dose did not vary during the hard match schedule. Exercise dose was not different between playing positions. The majority of activity during training was spent performing sedentary behaviour or very light intensity activity (64.3 ± 6.1%). Front-court players performed a greater proportion of very light intensity activity (mean difference: 6.8 ± 2.8%), whereas back-court players performed more supramaximal intensity activity (mean difference: 4.5 ± 1.0%). No positional differences existed in the proportion of time in all other intensity zones. Objective evaluation of exercise dose might allow coaches to better prescribe and monitor the demands of basketball training.
Using an electrospinning technique, polymer materials have been spun using electrostatic potential to create a fiber mat. To develop the electrospinning opportunities available for practical applications, it is important that a full understanding of process parameters is achieved. These fundamental principles will form the initial framework of future research with the effects on polymer output examined as the primary focus of this article. Poly(vinyl alcohol) (PVOH) and polylactic acid (PLA) polymer solutions were developed and a Design of Experiments (DoE) approach implemented, to determine whether the variation of factors led to significant effects on fiber output. Parameters altered were conductivity, concentration (% w/w), electrostatic potential, and the collection distance at which the fiber was obtained. Results taken considered the fiber diameter, deposition rate of material, current achieved at the point of collection and whether or not the material was actually able to electrospin and visibly produce polymer fiber. The results of this work indicate the presence of interactions between the processing parameters and as such allow a fine tuning process to be used to adapt production of the micro-and nanofibers to suit a desired application with specific materials properties.
A detailed understanding of charge density and its origins during the electrospinning process is desirable for developing new electrospinnable polymer-solvent systems and ensuring mathematical models of the process are accurate. In this work, two different approaches were taken to alter the charge density in order to measure its effect on the Taylor cone, mass deposition rate and initial jet diameter. It was found that an increase in charge density results in a decrease in the mass deposition rate and initial jet diameter. A theory is proposed for this behaviour in that an increase in charge density leads to the tip of the Taylor cone forming a smaller radius of curvature resulting in the concentration of electric stresses at the tip. This leads to the electrostatic forces drawing the initial jet from a smaller effective area or "virtual orifice".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.