BACKGROUND:
Surgical-site infection is a source of significant morbidity after colorectal surgery. Previous efforts to develop models that predict surgical-site infection have had limited accuracy. Machine learning has shown promise in predicting postoperative outcomes by identifying nonlinear patterns within large data sets.
OBJECTIVE:
This study aimed to seek usage of machine learning to develop a more accurate predictive model for colorectal surgical-site infections.
DESIGN:
Patients who underwent colorectal surgery were identified in the American College of Surgeons National Quality Improvement Program database from years 2012 to 2019 and were split into training, validation, and test sets. Machine-learning techniques included random forest, gradient boosting, and artificial neural network. A logistic regression model was also created. Model performance was assessed using area under the receiver operating characteristic curve.
SETTINGS:
A national, multicenter data set.
PATIENTS:
Patients who underwent colorectal surgery.
MAIN OUTCOME MEASURES:
The primary outcome (surgical-site infection) included patients who experienced superficial, deep, or organ-space surgical-site infections.
RESULTS:
The data set included 275,152 patients after the application of exclusion criteria. Of all patients, 10.7% experienced a surgical-site infection. Artificial neural network showed the best performance with area under the receiver operating characteristic curve of 0.769 (95% CI, 0.762–0.777), compared with 0.766 (95% CI, 0.759–0.774) for gradient boosting, 0.764 (95% CI, 0.756–0.772) for random forest, and 0.677 (95% CI, 0.669–0.685) for logistic regression. For the artificial neural network model, the strongest predictors of surgical-site infection were organ-space surgical-site infection present at time of surgery, operative time, oral antibiotic bowel preparation, and surgical approach.
LIMITATIONS:
Local institutional validation was not performed.
CONCLUSIONS:
Machine-learning techniques predict colorectal surgical-site infections with higher accuracy than logistic regression. These techniques may be used to identify patients at increased risk and to target preventive interventions for surgical-site infection. See Video Abstract at http://links.lww.com/DCR/C88.
PREDICCIÓN MEJORADA DE LA INFECCIÓN DEL SITIO QUIRÚRGICO DESPUÉS DE LA CIRUGÍA COLORRECTAL MEDIANTE EL APRENDIZAJE AUTOMÁTICO
ANTECEDENTES:
La infección del sitio quirúrgico es una fuente de morbilidad significativa después de la cirugía colorrectal. Los esfuerzos anteriores para desarrollar modelos que predijeran la infección del sitio quirúrgico han tenido una precisión limitada. El aprendizaje automático se ha mostrado prometedor en la predicción de los resultados posoperatorios mediante la identificación de patrones no lineales dentro de grandes conjuntos de datos.
OBJETIVO:
Intentamos utilizar el aprendizaje automático para desarrollar un modelo predictivo más preciso para las infecciones del sitio quirúrgico colorrectal.
DISEÑO:
Los pacien...
Background Ureteral injury (UI) is a rare but devastating complication during colorectal surgery. Ureteral stents may reduce UI but carry risks themselves. Risk predictors for UI could help target the use of stents, but previous efforts have relied on logistic regression (LR), shown moderate accuracy, and used intraoperative variables. We sought to use an emerging approach in predictive analytics, machine learning, to create a model for UI. Methods Patients who underwent colorectal surgery were identified in the National Surgical Quality Improvement Program (NSQIP) database. Patients were split into training, validation, and test sets. The primary outcome was UI. Three machine learning approaches were tested including random forest (RF), gradient boosting (XGB), and neural networks (NN), and compared with traditional LR. Model performance was assessed using area under the curve (AUROC). Results The data set included 262,923 patients, of whom 1519 (.578%) experienced UI. Of the modeling techniques, XGB performed the best, with an AUROC score of .774 (95% CI .742-.807) compared with .698 (95% CI .664-.733) for LR. Random forest and NN performed similarly with scores of .738 and .763, respectively. Type of procedure, work RVUs, indication for surgery, and mechanical bowel prep showed the strongest influence on model predictions. Conclusions Machine learning-based models significantly outperformed LR and previous models and showed high accuracy in predicting UI during colorectal surgery. With proper validation, they could be used to support decision making regarding the placement of ureteral stents preoperatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.