A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities.
The great variety of geological and hydrological conditions in the deep sea generates many different habitats. Some are only recently explored, although their true extent and geographical coverage are still not fully established. Both continental margins and mid-oceanic seafloors are much more complex ecologically, geologically, chemically and hydrodynamically than originally thought. As a result, fundamental patterns of species distribution first observed and explained in the context of relatively monotonous slopes and abyssal plains must now be re-evaluated in the light of this newly recognized habitat heterogeneity. Based on a global database of nematode genus composition, collected as part of the Census of Marine Life, we show that macrohabitat heterogeneity contributes significantly to total deep-sea nematode diversity on a global scale. Different deep-sea settings harbour specific nematode assemblages. Some of them, like coral rubble zones or nodule areas, are very diverse habitats. Factors such as increased substrate complexity in the case of nodules and corals seem to facilitate the co-existence of a large number of genera with different modes of life, ranging from sediment dwelling to epifaunal. Furthermore, strong biochemical gradients in the case of vents or seeps are responsible for the success of particular genera, which are not prominent in more typical soft sediments. Many
The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.