Mass spectrometry of intact soluble protein complexes has emerged as a powerful technique to study the stoichiometry, structure-function and dynamics of protein assemblies. Recent developments have extended this technique to the study of membrane protein complexes where it has already revealed subunit stoichiometries and specific phospholipid interactions. Here, we describe a protocol for mass spectrometry of membrane protein complexes. The protocol begins with preparation of the membrane protein complex enabling not only the direct assessment of stoichiometry, delipidation, and quality of the target complex, but also evaluation of the purification strategy. A detailed list of compatible non-ionic detergents is included, along with a protocol for screening detergents to find an optimal one for mass spectrometry, biochemical and structural studies. This protocol also covers the preparation of lipids for protein-lipid binding studies and includes detailed settings for a Q-ToF mass spectrometer after introduction of complexes from gold-coated nanoflow capillaries.
Oligomerisation of membrane proteins in response to lipid binding plays a critical role in many cell-signaling pathways 1 but is often difficult to define 2 or predict 3. Here we develop a mass spectrometry platform to determine simultaneously presence of interfacial lipids and oligomeric stability and discover how lipids act as key regulators of membrane protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins revealed an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT) 4 one of the proteins with the lowest oligomeric stability, we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid binding sites or expression in cardiolipin (CDL) deficient Escherichia coli, abrogated dimer formation. Molecular dynamics simulation revealed that CDL acts as a bidentate ligand bridging across subunits. Subsequently, we show that for the sugar transporter SemiSWEET from Vibrio splendidus 5, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesised that lipids would be essential for dimerisation of the Na + /H + antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for substantially more stable, homologous NapA from Thermus thermophilus. We found that lipid binding is obligatory for dimerisation of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids we provide a rationale for Competing Financial Interests:The authors declare no competing financial interest Data Availability. The raw data for Figure 1 is provided in the Supplementary Table 1. All other data are available upon request. Europe PMC Funders GroupAuthor Manuscript Nature. Author manuscript; available in PMC 2017 July 19. Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including GPCRs.The recent surge in structure determination of membrane proteins is providing details of protein-lipid binding 6 and yielding insight into the regulatory roles of lipids 7,8. The advent of mass spectrometry (MS) methods for characterising membrane proteins, individually 9, within interactomes 10, and in intact assemblies 11, is adding new information to potential roles of lipids inducing conformational changes 12, contributing to activity and modulating drug efflux (reviewed in 13). The role of lipids towards maintaining the oligomeric state of membrane proteins has however remained widely debated. To understand this phenomenon we performed a bioinformatics analysis of all the α-helical oligomeric transmembrane proteins with known structures. To gauge their relative stability, we ranked these olig...
Small molecules are known to stabilise membrane proteins and to modulate function and oligomeric state, but their identity is often hard to define. Here we develop and apply a high-resolution, Orbitrap mass spectrometer for intact membrane protein-ligand complexes. Using this platform we resolve the complexity of multiple binding events, quantify small molecule binding and reveal selectivity for endogenous lipids that differ only in acyl chain length.
Ion mobility spectrometry, with subsequent mass spectrometric detection, has been employed to study the stability of compact protein conformations of FK-binding protein, hen egg-white lysozyme, and horse heart myoglobin in the presence and absence of bound ligands. Protein ions, generated by electrospray ionization from ammonium acetate buffer, were activated by collision with argon gas to induce unfolding of their compact structures. The collisional cross sections (⍀) of folded and unfolded conformations were measured in the T-Wave mobility cell of a Waters Synapt HDMS (Waters, Altrincham, UK) employing a calibration against literature values for a range of protein standards. In the absence of activation, collisional cross section measurements were found to be consistent with those predicted for folded protein structures. Under conditions of defined collisional activation energies partially unfolded conformations were produced. The degree of unfolding and dissociation induced by these defined collision energies are related to the stability of noncovalent intra-and intermolecular interactions within protein complexes. These findings highlight the additional conformational stability of protein ions in the gas phase resulting from ligand binding. E lectrospray ionization-mass spectrometry (ESI-MS) is a technique able to preserve the non-covalent interactions of protein-ligand complexes in the gas phase [1][2][3]. Since its original discovery, the application of ESI-MS in this area has accelerated rapidly [4,5]. The ESI-MS approach can provide a sensitive and efficient means of obtaining valuable information relevant to binding events allowing, for example, the stoichiometries of noncovalent complexes to be easily obtained [6,7]. The practical information available from ESI-MS measurement is already well documented [8]. In addition to stoichiometry, the affinities of protein-ligand interactions can be quantified using MS [9 -12]. In many cases, binding affinities determined using ESI-MS show good agreement with values obtained using other means, potentially validating MS methods for use in early-stage screening in the drug discovery process [13,14]. ESI-MS is not only suitable for the analysis of protein-ligand interactions, but has widespread utility in studying large protein-protein complexes [15,16], and has been applied to the preservation and detection of very large biomolecular assemblies, including the ribosome [17,18] and the tobacco mosaic virus (Ͼ40 MDa) [19].A key underlying issue in ESI-MS studies of ligand binding is to what extent these findings can be related to solution behavior. Given the great importance of water to the protein fold [20], it seems clear that desolvation should result in catastrophic loss of native structure, with accompanying consequences for ligand binding. Not withstanding the role of solvation spheres around the protein, a recent study has provided evidence that an interior water molecule in FK-binding protein makes significant contribution to the structural integrity of the fo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.