We present a new plate tectonic model for the breakup and dispersal of East and West Gondwana and subsequent formation of the Indian Ocean, focussed on the early evolution of the Eastern Margin of Africa. We start from a tight reconstruction of all the Precambrian pieces. Using primarily ocean-floor fracture zone data, the development of the ocean between India and Antarctica is resolved into four distinct spreading regimes and that between Antarctica and Africa into seven distinct regimes. The movement of Madagascar against Africa is then investigated as part of the plate–circuit closure between Africa and India in the Madagascar–Africa–Antarctica–India–Madagascar system. We conclude that a distinct change in plate tectonic regime off East Africa occurred at about 153 Ma (Kimmeridgian) when transforms were first activated offshore. Before this time, East and West Gondwana were separated by a rift, propagating from NE to SW and starting between 188 and 170 Ma. The model is defined by Euler interval poles, published here for the first time, and a refined global animation that may be inspected and copied from the URL www.reeves.nl/Gondwana. The analysis points to a small number of disruptive events in the otherwise inexorable growth of the oceans.
The structural evolution of all of the Southern Margin Basins can be explained by episodic reactivation of basement structures in respect to a specific sequence of tectonic events. Three geological provinces dominate the basement geology of the Southern Margin basins. The Eyre, Ceduna, Duntroon and Polda Basins overlie basement of the Archean to Proterozoic Gawler-Antarctic Craton. The Otway and Sorell Basins overlie basement of the Neoproterozoic-early Palaeozoic Adelaide- Kanmantoo Fold Belt. The Bass and Gippsland Basins overlie basement of the Palaeozoic Lachlan Fold Belt. The contrasting basement terranes within the three basement provinces and the structures within and between them significantly influenced the evolution and architecture of the Southern Margin basins.The present-day geometry was established during three Mesozoic extensional basin phases:Late Jurassic–Early Cretaceous NW–SE transtension forming deep rift basins to the west and linked pullapart basins and oblique graben east of the Southwest Ceduna Accommodation Zone; Early–Mid Cretaceous NE–SW extension; and Late Cretaceous NNE–SSW extension leading to continental breakup. At least three, potentially trap forming, inversion events have variably influenced the Southern Margin basins; Mid Cretaceous, Eocene, and Miocene-Recent. Volcanism occurred along the margin during the Late Cretaceous and sporadically through the Tertiary.First-order structural control on Mesozoic rifting and breakup were east–west trending basement structures of the southern Australian fracture zone. Second-order controls include:Proterozoic basement shear zones and/or terrane boundaries in the western Gawler Craton, which controlled basin evolution in the Eyre and Ceduna Subbasins; Neoproterozoic structures, which significantly influenced basin evolution in the Ceduna sub-basin; Cambro-Ordovician basement shear zones and/or terrane boundaries, which were a primary control on basin evolution in the Otway and Sorell Basins; and Palaeozoic structures in the Lachlan Fold Belt, which controlled basin evolution in the Bass and Gippsland Basins.A SEEBASE™ (Structurally Enhanced view of Economic Basement) model for the Southern Margin basins has been constructed to show basement topography. When used in combination with a rigorous interpretation of the structural evolution of the margin, it provides a foundation for basin phase and source rock distribution, hydrocarbon fluid focal points and trap type/distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.