Although matrix metalloproteinase (MMPs) and tissue inhibitor of metalloproteinase (TIMPs) play vital role in tumor angiogenesis and TIMP-3 caused apoptosis, their role in cardiac angiogenesis is unknown. Interestingly, a disruption of coordinated cardiac hypertrophy and angiogenesis contributed to the transition to heart failure, however, the proteolytic and anti-angiogenic mechanisms of transition from compensatory hypertrophy to decompensatory heart failure were unclear. We hypothesized that after an aortic stenosis MMP-2 released angiogenic factors during compensatory hypertrophy and MMP-9/TIMP-3 released antiangiogenic factors causing decompensatory heart failure. To verify this hypothesis, wild type (WT) mice were studied 3 and 8 wks after aortic stenosis, created by banding the ascending aorta in WT and MMP-9−/− (MMP-9KO) mice. Cardiac function (echo, PV loops) was decreased at 8 wks after stenosis. The levels of MMP-2 (western blot) increased at 3 wks and returned to control level at 8 wks, MMP-9 increased only at 8 wks. TIMP-2 and −4 decreased at 3 and even more at 8 wks. The angiogenic VEGF increased at 3 wks and decreased at 8 wks, the antiangiogenic endostatin and angiostatin increased only at 8 wks. CD-31 positive endothelial cells were more intensely labeled at 3 wks than in sham operated or in 8 wks banded mice. Vascularization, as estimated by x-ray angiography, was increased at 3 wks and decreased at 8 wks post-banding. Although vast majority of studies were performed on control WT mice only, interestingly, MMP9-KO mice seemed to have increased vascular density 8 wks after banding. These results suggested that there was increase in MMP-2, decrease in TIMP-2 and −4, increase in angiogenic factors and vascularization in compensatory hearts. However, in decompensatory hearts there was increase in MMP-9, TIMP-3, endostatin, angiostatin and vascular rarefaction.
We reported previously that although there is disruption of coordinated cardiac hypertrophy and angiogenesis in transition to heart failure, matrix metalloproteinase (MMP)-9 induced antiangiogenic factors play a vital role in this process. Previous studies have shown the cardioprotective role of hydrogen sulfide (H₂S) in various cardiac diseases, but its role during transition from compensatory hypertrophy to heart failure is yet to be unveiled. We hypothesize that H₂S induces MMP-2 activation and inhibits MMP-9 activation, thus promoting angiogenesis, and mitigates transition from compensatory cardiac hypertrophy to heart failure. To verify this, aortic banding (AB) was created to mimic pressure overload in wild-type (WT) mice, which were treated with sodium hydrosulfide (NaHS, H₂S donor) in drinking water and compared with untreated control mice. Mice were studied at 3 and 8 wk. In the NaHS-treated AB 8 wk group, the expression of MMP-2, CD31, and VEGF was increased while the expression of MMP-9, endostatin, angiostatin, and tissue inhibitor of matrix metalloproteinase (TIMP)-3 was decreased compared with untreated control mice. There was significant reduction in fibrosis in NaHS-treated groups. Echocardiograph and pressure-volume data revealed improvement of cardiac function in NaHS-treated groups over untreated controls. These results show that H₂S by inducing MMP-2 promotes VEGF synthesis and angiogenesis while it suppresses MMP-9 and TIMP-3 levels, inhibits antiangiogenic factors, reduces intracardiac fibrosis, and mitigates transition from compensatory hypertrophy to heart failure.
High levels of homocysteine (Hcy) known as hyperhomocysteine-mia (HHcy), contribute to autophagy and ischemia/reperfusion injury (I/R). Previous studies have shown that I/R injury and HHcy cause increased cerebrovascular permeability; however, the associated mechanism remains obscure. Interestingly, during HHcy, cytochome-c becomes homocysteinylated (Hcy-cyto-c). Cytochrome-c (cyto-c) transports electrons and facilitates bioenergetics in the system. However, its role in autophagy during ischemia/reperfusion injury is unclear. Tetrahydrocurcumin (THC) is a major herbal antioxidant and anti-inflammatory agent. Therefore, the objective of this study was to determine whether THC ameliorates autophagy during ischemia/reperfusion injury by reducing homocysteinylation of cyto-c in hyperhomocysteinemia pathological condition. To test this hypothesis we employed 8–10 weeks old male cystathionine-beta-synthase heterozygote knockout (CBS+/−) mice (genetically hyperhomocystemic mice). Experimental group was: CBS+/−, CBS+/−+THC (25mg/kg in 0.1%DMSO dose); CBS (+/−)/I/R and CBS (+/−)/I/R+THC(25mg/kg in 0.1%DMSO dose). Ischemia was performed for 30 min and reperfusion for 72 hours. THC was injected intra-peritoneally (I.P.) once daily for a period of 3 days after 30 of ischemia. The infarct area was measured using 2,3,5-triphenyltetrazolium chloride staining. Permeability was determined by brain edema and Evans Blue extravasation. The brain tissues were analyzed for oxidative stress, matrix metalloproteinase-9 (MMP-9), damage-regulated autophagy modulator (DRAM), and microtubule-associated protein 1 light chain 3 (LC3) by Western blot. The mRNA levels of S-Adenosyl-L-homocysteine hydrolases (SAHH) and Methylenetetrahydrofolate reductase (MTHFR) genes were measured by Quantitative real-time polymerase chain reaction. Co-immunoprecipitation was used to determine the homocysteinylation of cyto-c. We found that brain edema and Evans Blue leakage were reduced in I/R+THC treated groups as compared to sham operated groups along with reduced brain infarct size. THC also decreased oxidativedamage and ameliorated the homocysteinylation of cyto-c in-part by MMP-9 activation which leads to autophagy in I/R groups as compared to sham operated groups. This study suggests a potential therapeutic role of dietary THC in cerebral ischemia.
Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase-9 (MMP-9), which degrades the matrix and leads to blood–brain barrier dysfunction. Hcy competitively binds to γ-aminbutyric acid (GABA) receptors, which are excitatory neurotransmitter receptors. However, the role of GABA-A receptor in Hcy-induced cerebrovascular remodeling is not clear. We hypothesized that Hcy causes cerebrovascular remodeling by increasing redox stress and MMP-9 activity via the extracellular signal-regulated kinase (ERK) signaling pathway and by inhibition of GABA-A receptors, thus behaving as an inhibitory neurotransmitter. Hcy-induced reactive oxygen species production was detected using the fluorescent probe, 2′–7′-dichlorodihydrofluorescein diacetate. Hcy increased nicotinamide adenine dinucleotide phosphate-oxidase-4 concomitantly suppressing thioredoxin. Hcy caused activation of MMP-9, measured by gelatin zymography. The GABA-A receptor agonist, muscimol ameliorated the Hcy-mediated MMP-9 activation. In parallel, Hcy caused phosphorylation of ERK and selectively decreased levels of tissue inhibitors of metalloproteinase-4 (TIMP-4). Treatment of the endothelial cell with muscimol restored the levels of TIMP-4 to the levels in control group. Hcy induced expression of iNOS and decreased eNOS expression, which lead to a decreased NO bioavailability. Furthermore muscimol attenuated Hcy-induced MMP-9 via ERK signaling pathway. These results suggest that Hcy competes with GABA-A receptors, inducing the oxidative stress transduction pathway and leading to ERK activation.
Autophagy is an important process in the pathogenesis of cardiovascular diseases; however, the proximal triggers for mitochondrial autophagy were unknown. The N-methyl-D-aspartate receptor 1 (NMDA-R1) is a receptor for homocysteine (Hcy) and plays a key role in cardiac dysfunction. Cardiac-specific deletion of NMDA-R1 has been shown to ameliorate Hcy-induced myocyte contractility. Hcy activates mitochondrial matrix metalloproteinase-9 (mtMMP-9) and induces translocation of connexin-43 (Cxn-43) to the mitochondria (mtCxn-43). We sought to show cardiac-specific deletion of NMDA-R1 mitigates Hcy-induced mtCxn-43 translocation, mtMMP-9-mediated mtCxn-43 degradation, leading to mitophagy, in part, by decreasing mitochondrial permeability (MPT). Cardiac-specific knockout (KO) of NAMDA-R1 was generated using the cre/lox approach. The myocyte mitochondria were isolated from wild type (WT), WT + Hcy (1.8 g of DL-Hcy/L in the drinking water for 6 weeks), NMDA-R1 KO + Hcy, and NR1 fl/fl /Cre (NR1 fl/fl ) genetic control mice. Mitochondrial respiratory capacity and MPT were measured by fluorescence-dye methods. The mitochondrial superoxide and peroxinitrite levels were detected by confocal microscopy using Mito-SOX and dihydrorhodamine-123. The mtMMP-9 activity and expression were detected by zymography and RT-PCR analyses. The mtCxn-43 translocation was detected by confocal microscopy. The degradation of mtCxn-43 and LC3-I/II (a marker of autophagy) were detected by Western blot. These results suggested that Hcy enhanced intramitochondrial nitrosative stress in myocytes. There was a robust increase in mtMMP-9 activity. An increase in translocation and degradation of mtCxn-43 was also noted. These increases led to mitophagy. The effects were ameliorated by cardiac-specific deletion of NMDA-R1. We concluded that HHcy increased mitochondrial nitrosative stress, thereby activating mtMMP-9 and inciting the degradation of mtCxn-43. This led to mitophagy, in part, by activating NMDA-R1. The findings of this study will lead to therapeutic ramifications for mitigating cardiovascular diseases by inhibiting the mitochondrial mitophagy and NMDA-R1 receptor. KeywordsMitochondrial MMP; mitochondrial connexin-43 and microtubule-associated protein light chain 3; nitrosative stress
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.