This paper reports part of an international research project with the long-term aim of developing more sustainable asphalt mixture with crack-healing properties by the addition of recycled metallic waste from industrial sources. Specifically, this article presents an evaluation of the physical, thermophysical, and mechanical properties of asphalt mixtures with metallic fiber obtained from recycled tires for crack-healing purposes. Detailed results on the crack-healing of asphalt mixtures will be reported in a second article. Results showed a small reduction on the bulk density and increase in the air voids content was quantified with increasing fiber contents. The experimental results showed that mixing and compaction was more difficult for higher fiber contents due to less space for the bitumen to freely flow and fill the voids of the mixtures. Computed tomography (CT) results allowed to identify clustering and orientation of the fibers. The samples were electrically conductive, and the electrical resistivity decreased with the increase of the fiber content. Fiber content had a direct effect on the indirect tensile stiffness modulus (ITSM) and strength (ITS) that decreased with increasing temperature for mixtures and with increase in fiber content. However, the indirect tensile strength ratio (ITSR) was within acceptable limits. In short, results indicate that fibers from recycled tires have a potential for use within asphalt mixtures to promote crack-healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.