Machine learned force fields typically require manual construction of training sets consisting of thousands of first principles calculations, which can result in low training efficiency and unpredictable errors when applied to structures not represented in the training set of the model. This severely limits the practical application of these models in systems with dynamics governed by important rare events, such as chemical reactions and diffusion. We present an adaptive Bayesian inference method for automating the training of interpretable, low-dimensional, and multi-element interatomic force fields using structures drawn on the fly from molecular dynamics simulations.Within an active learning framework, the internal uncertainty of a Gaussian process regression model is used to decide whether to accept the model prediction or to perform a first principles calculation to augment the training set of the model. The method is applied to a range of single-and multi-element systems and shown to achieve a favorable balance of accuracy and computational efficiency, while requiring a minimal amount of ab initio training data. We provide a fully open-source implementation of our method, as well as a procedure to map trained models to computationally efficient tabulated force fields.
Recently, machine learning (ML) has been used to address the computational cost that has been limiting ab initio molecular dynamics (AIMD). Here, we present GNNFF, a graph neural network framework to directly predict atomic forces from automatically extracted features of the local atomic environment that are translationally-invariant, but rotationally-covariant to the coordinate of the atoms. We demonstrate that GNNFF not only achieves high performance in terms of force prediction accuracy and computational speed on various materials systems, but also accurately predicts the forces of a large MD system after being trained on forces obtained from a smaller system. Finally, we use our framework to perform an MD simulation of Li7P3S11, a superionic conductor, and show that resulting Li diffusion coefficient is within 14% of that obtained directly from AIMD. The high performance exhibited by GNNFF can be easily generalized to study atomistic level dynamics of other material systems.
Restructuring of interfaces plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different composition and morphology at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of long-timescale restructuring of Pd deposited on Ag, using microscopy, spectroscopy, and novel simulation methods. By developing and performing accelerated machine-learning molecular dynamics followed by an automated analysis method, we discover and characterize previously unidentified surface restructuring mechanisms in an unbiased fashion, including Pd-Ag place exchange and Ag pop-out, as well as step ascent and descent. Remarkably, layer-by-layer dissolution of Pd into Ag is always preceded by an encapsulation of Pd islands by Ag, resulting in a significant migration of Ag out of the surface and a formation of extensive vacancy pits within a period of microseconds. These metastable structures are of vital catalytic importance, as Ag-encapsulated Pd remains much more accessible to reactants than bulk-dissolved Pd. Our approach is broadly applicable to complex multimetallic systems and enables the previously intractable mechanistic investigation of restructuring dynamics at atomic resolution. File list (2) download file view on ChemRxiv 061220_PdAg_ESI_v5.pdf (13.63 MiB) download file view on ChemRxiv 061220_PdAg_Main_v5.pdf (11.39 MiB)
We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels by mapping both forces and uncertainties onto functions of low-dimensional features. This allows for automated active learning of models combining near-quantum accuracy, built-in uncertainty, and constant cost of evaluation that is comparable to classical analytical models, capable of simulating millions of atoms. Using this approach, we perform large-scale molecular dynamics simulations of the stability of the stanene monolayer. We discover an unusual phase transformation mechanism of 2D stanene, where ripples lead to nucleation of bilayer defects, densification into a disordered multilayer structure, followed by formation of bulk liquid at high temperature or nucleation and growth of the 3D bcc crystal at low temperature. The presented method opens possibilities for rapid development of fast accurate uncertainty-aware models for simulating long-time large-scale dynamics of complex materials.
Atomistic modeling of chemically reactive systems has so far relied on either expensive ab initio methods or bond-order force fields requiring arduous parametrization. Here, we describe a Bayesian active learning framework for autonomous “on-the-fly” training of fast and accurate reactive many-body force fields during molecular dynamics simulations. At each time-step, predictive uncertainties of a sparse Gaussian process are evaluated to automatically determine whether additional ab initio training data are needed. We introduce a general method for mapping trained kernel models onto equivalent polynomial models whose prediction cost is much lower and independent of the training set size. As a demonstration, we perform direct two-phase simulations of heterogeneous H2 turnover on the Pt(111) catalyst surface at chemical accuracy. The model trains itself in three days and performs at twice the speed of a ReaxFF model, while maintaining much higher fidelity to DFT and excellent agreement with experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.