Understanding the mental state of other people is an important skill for intelligent agents and robots to operate within social environments. However, the mental processes involved in 'mind-reading' are complex. One explanation of such processes is Simulation Theoryit is supported by a large body of neuropsychological research. Yet, determining the best computational model or theory to use in simulation-style emotion detection, is far from being understood. In this work, we use Simulation Theory and neuroscience findings on MirrorNeuron Systems as the basis for a novel computational model, as a way to handle affective facial expressions. The model is based on a probabilistic mapping of observations from multiple identities onto a single fixed identity ('internal transcoding of external stimuli'), and then onto a latent space ('phenomenological response'). Together with the proposed architecture we present some promising preliminary results.
Nowadays, robots are gradually appearing in public spaces such as libraries, train stations, airports and shopping centres. Only a limited percentage of research literature explores robot applications in public spaces. Studying robot applications in the wild is particularly important for designing commercially viable applications able to meet a specific goal. Therefore, in this paper we conduct an experiment to test a robot application in a shopping centre, aiming to provide results relevant for today's technological capability and market. We compared the performance of a robot and a human in promoting food samples in a shopping centre, a well known commercial application, and then analysed the effects of the type of engagement used to achieve this goal. Our results show that the robot is able to engage customers similarly to a human as expected. However unexpectedly, while an actively engaging human was able to perform better than a passively engaging human, we found the opposite effect for the robot. In this paper we investigate this phenomenon, with possible explanation ready to be explored and tested in subsequent research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.