Immunomodulatory drugs could contribute to a functional cure for Human Immunodeficiency Virus (HIV). Interleukin-15 (IL-15) promotes expansion and activation of CD8+ T cell and natural killer (NK) cell populations. In one study, an IL-15 superagonist, N-803, suppressed Simian Immunodeficiency Virus (SIV) in non-human primates (NHPs) who had received prior SIV vaccination. However, viral suppression attenuated with continued N-803 treatment, partially returning after long treatment interruption. While there is evidence of concurrent drug tolerance, immune regulation, and viral escape, the relative contributions of these mechanisms to the observed viral dynamics have not been quantified. Here, we utilize mathematical models of N-803 treatment in SIV-infected macaques to estimate contributions of these three key mechanisms to treatment outcomes: 1) drug tolerance, 2) immune regulation, and 3) viral escape. We calibrated our model to viral and lymphocyte responses from the above-mentioned NHP study. Our models track CD8+ T cell and NK cell populations with N-803-dependent proliferation and activation, as well as viral dynamics in response to these immune cell populations. We compared mathematical models with different combinations of the three key mechanisms based on Akaike Information Criterion and important qualitative features of the NHP data. Two minimal models were capable of reproducing the observed SIV response to N-803. In both models, immune regulation strongly reduced cytotoxic cell activation to enable viral rebound. Either long-term drug tolerance or viral escape (or some combination thereof) could account for changes to viral dynamics across long breaks in N-803 treatment. Theoretical explorations with the models showed that less-frequent N-803 dosing and concurrent immune regulation blockade (e.g. PD-L1 inhibition) may improve N-803 efficacy. However, N-803 may need to be combined with other immune therapies to countermand viral escape from the CD8+ T cell response. Our mechanistic model will inform such therapy design and guide future studies.
Immunotherapeutic cytokines can activate immune cells against cancers and chronic infections. N-803 is an IL-15 superagonist that expands CD8+ T cells and increases their cytotoxicity. N-803 also temporarily reduced viral load in a limited subset of non-human primates infected with simian immunodeficiency virus (SIV), a model of HIV. However, viral suppression has not been observed in all SIV cohorts and may depend on pre-treatment viral load and the corresponding effects on CD8+ T cells. Starting from an existing mechanistic mathematical model of N-803 immunotherapy of SIV, we develop a model that includes activation of SIV-specific and non-SIV-specific CD8+ T cells by antigen, inflammation, and N-803. Also included is a regulatory counter-response that inhibits CD8+ T cell proliferation and function, representing the effects of immune checkpoint molecules and immunosuppressive cells. We simultaneously calibrate the model to two separate SIV cohorts. The first cohort had low viral loads prior to treatment (≈3-4 log viral RNA copy equivalents (CEQ)/mL), and N-803 treatment transiently suppressed viral load. The second had higher pre-treatment viral loads (≈5-7 log CEQ/mL) and saw no consistent virus suppression with N-803. The mathematical model can replicate the viral and CD8+ T cell dynamics of both cohorts based on different pre-treatment viral loads and different levels of regulatory inhibition of CD8+ T cells due to those viral loads (i.e. initial conditions of model). Our predictions are validated by additional data from these and other SIV cohorts. While both cohorts had high numbers of activated SIV-specific CD8+ T cells in simulations, viral suppression was precluded in the high viral load cohort due to elevated inhibition of cytotoxicity. Thus, we mathematically demonstrate how the pre-treatment viral load can influence immunotherapeutic efficacy, highlighting the in vivo conditions and combination therapies that could maximize efficacy and improve treatment outcomes.
Immunomodulatory drugs could contribute to a functional cure for Human Immunodeficiency Virus (HIV). Interleukin-15 (IL-15) promotes expansion and activation of CD8+ T cell and natural killer (NK) cell populations. In one study, an IL-15 superagonist, N-803, suppressed Simian Immunodeficiency Virus (SIV) in non-human primates (NHPs) who had received prior SIV vaccination. However, viral suppression attenuated with continued N-803 treatment, partially returning after long treatment interruption. While there is evidence of concurrent drug tolerance, immune regulation, and viral escape, the relative contributions of these mechanisms to the observed viral dynamics have not been quantified. Here, we utilize mathematical models of N- 803 treatment in SIV-infected macaques to estimate contributions of these three key mechanisms to treatment outcomes: 1) drug tolerance, 2) immune regulation, and 3) viral escape. We calibrated our model to viral and lymphocyte responses from the above-mentioned NHP study. Our models track CD8+ T cell and NK cell populations with N-803-dependent proliferation and activation, as well as viral dynamics in response to these immune cell populations. We compared mathematical models with different combinations of the three key mechanisms based on Akaike Information Criterion and important qualitative features of the NHP data. Two minimal models were capable of reproducing the observed SIV response to N-803. In both models, immune regulation strongly reduced cytotoxic cell activation to enable viral rebound. Either long-term drug tolerance or viral escape (or some combination thereof) could account for changes to viral dynamics across long breaks in N-803 treatment. Theoretical explorations with the models showed that less-frequent N-803 dosing and concurrent immune regulation blockade (e.g. PD-L1 inhibition) may improve N-803 efficacy. However, N-803 may need to be combined with other immune therapies to countermand viral escape from the CD8+ T cell response. Our mechanistic model will inform such therapy design and guide future studies.
The properties of carbon nanotubes are dependent, in part, on the size of the catalyst metal nanoparticles from which the carbon nanotubes are grown. Annealing is a common technique for forming the catalyst nanoparticles from deposited films. While there is ample work connecting catalyst film properties or catalyst nanoparticle properties to carbon nanotube growth outcomes, the control of catalyst nanoparticle size by means other than the variation of initial film thickness is less explored. This work develops an empirical correlation for the control of nickel nanoparticle equivalent diameter by modification of anneal plateau temperature and anneal plateau time, thereby providing an additional avenue of control for catalyst properties. It has been hypothesized that the size of catalyst nanoparticles can be predetermined by appropriate selection of the initial catalyst film thickness, plateau temperature, and plateau time of the annealing process. To this end, buffer layers of 50 nm titanium, followed by 20 nm aluminum, were deposited onto silicon substrates via electron beam evaporation. Nickel catalyst layers were then deposited with thicknesses of either 5, 10, or 20 nm. Samples of each of the three nickel layer thicknesses were annealed in an ambient air environment at different combinations of 500, 600, 700, 800, and 900 °C plateau temperature and 5, 10, and 15 minute plateau time. Representative time-temperature curves corresponding to each plateau temperature were also acquired. The end result was a set of 45 samples, each with a unique combination of initial nickel film thickness, anneal plateau temperature, and anneal plateau time. Resulting nanoparticles were characterized by atomic force microscopy, and distributions of nanoparticle equivalent diameter were collected via a watershed algorithm implemented by the Gwyddion software package. Comparison of the 45 parameter combinations revealed a wide range of nanoparticle sizes. In most cases, comparable equivalent diameters were obtained from a variety of parameter combinations. Thus, results provide multiple options for achieving the same nanoparticle diameter, for use in cases where additional restraints are present. To facilitate such decisions, a correlation was developed that connected catalyst nanoparticle diameter to the three process parameters of initial catalyst film thickness, anneal plateau temperature, and anneal plateau time. For example, a given initial Ni film thickness can be annealed to a specified nanoparticle size by selecting anneal plateau temperature and plateau time per the correlation, provided that comparable buffer layers were chosen. This correlation provides a more robust array of options for specification of catalyst nanoparticle size and final carbon nanotube properties for a specific application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.