The use of air-water, θ(wa), or air-liquid contact angles is customary in surface science, while oil-water contact angles, θ(ow), are of paramount importance in subsurface multiphase flow phenomena including petroleum recovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain the relationship cos θ(wa) = 0.667 cos θ(ow) + 0.384 (R = 0.981, n = 13), intercepting cos θ(ow) = -1 at -0.284, which is in excellent agreement with the linear assumption of the theory. The theoretical slope, based on the fluid interfacial tensions σ(wa), σ(ow), and σ(oa), is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement with that obtained on an open planar silica surface using the same silane.
The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.
Multifunctional organic molecules represent an interesting challenge for nanoparticle functionalization due to the potential for undesirable interactions between the substrate material and the variable functionalities, making it difficult to control the final orientation of the ligand. In the present study, UV-induced thiol-ene click chemistry has been utilized as a means of directed functionalization of bifunctional ligands on an iron oxide nanoparticle surface. Allyl diphosphonic acid ligand was covalently deposited on the surface of thiol-presenting iron oxide nanoparticles via the formation of a UV-induced thioether. This method of thiol-ene click chemistry offers a set of reaction conditions capable of controlling the ligand deposition and circumventing the natural affinity exhibited by the phosphonic acid moiety for the iron oxide surface. These claims are supported via a multimodal characterization platform which includes thermogravimetric analysis, X-ray photoelectron spectroscopy, and metal contact analysis and are consistent with a properly oriented, highly active ligand on the nanoparticle surface. These experiments suggest thiol-ene click chemistry as both a practical and generally applicable strategy for the directed deposition of multifunctional ligands on metal oxide nanoparticle surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.