BackgroundWe previously found that cyclooxygenase 2 (COX-2) was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of multiple sclerosis (MS) (Carlson et al. J.Neuroimmunology 2006, 149:40). This suggests that COX-2 may contribute to death of oligodendrocytes.ObjectiveThe goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination.MethodsThe potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death.ResultsCOX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA). Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a significant decrease in sensitivity to KA induced death.ConclusionsCOX-2 expression was associated with dying oligodendrocytes in MS lesions and appeared to increase excitotoxic death of oligodendrocytes in culture. An understanding of how COX-2 expression influences oligodendrocyte death leading to demyelination may have important ramifications for future treatments for MS.
These data support generally mild changes to the speaking voice, which extend beyond reductions in pitch range only, and shed light on the potential untoward phonatory effects of acute, unilateral CT dysfunction.
Background: The EP1 receptor for the prostanoid PGE2 is a G-protein coupled receptor that has been shown to contribute to excitotoxic neuronal death. In this study we examined the influence of non-neuronal cells on neuroprotective properties of EP1 receptor antagonists (Ono 8711 and SC 51089).
BackgroundActivity of cyclooxygenase 2 (COX-2) in mouse oligodendrocyte precursor cells (OPCs) modulates vulnerability to excitotoxic challenge. The mechanism by which COX-2 renders OPCs more sensitive to excitotoxicity is not known. In the present study, we examined the hypothesis that OPC excitotoxic death is augmented by COX-2-generated prostaglandin E2 (PGE2) acting on specific prostanoid receptors which could contribute to OPC death.MethodsDispersed OPC cultures prepared from mice brains were examined for expression of PGE2 receptors and the ability to generate PGE2 following activation of glutamate receptors with kainic acid (KA). OPC death in cultures was induced by either KA, 3′-O-(Benzoyl) benzoyl ATP (BzATP) (which stimulates the purinergic receptor P2X7), or TNFα, and the effects of EP3 receptor agonists and antagonists on OPC viability were examined.ResultsStimulation of OPC cultures with KA resulted in nearly a twofold increase in PGE2. OPCs expressed all four PGE receptors (EP1–EP4) as indicated by immunofluorescence and Western blot analyses; however, EP3 was the most abundantly expressed. The EP3 receptor was identified as a candidate contributing to OPC excitotoxic death based on pharmacological evidence. Treatment of OPCs with an EP1/EP3 agonist 17 phenyl-trinor PGE2 reversed protection from a COX-2 inhibitor while inhibition of EP3 receptor protected OPCs from excitotoxicity. Inhibition with an EP1 antagonist had no effect on OPC excitotoxic death. Moreover, inhibition of EP3 was protective against toxic stimulation with KA, BzATP, or TNFα.ConclusionTherefore, inhibitors of the EP3 receptor appear to enhance survival of OPCs following toxic challenge and may help facilitate remyelination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.