Non-technical summary Abnormal pain sensitivity associated with inherited and acquired pain disorders occurs through increased excitability of peripheral sensory neurons in part due to changes in the properties of voltage-gated sodium channels (Navs). Resurgent sodium currents (I NaR ) are atypical currents believed to be associated with increased excitability of neurons and may have implications in pain. Mutations in Nav1.7 (peripheral Nav isoform) associated with two genetic pain disorders, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD), enhance Nav1.7 function via distinct mechanisms. We show that changes in Nav1.7 function due to mutations associated with PEPD, but not IEM, are important in I NaR generation, suggesting that I NaR may play a role in pain associated with PEPD. This knowledge provides us with a better understanding of the mechanism of I NaR generation and may lead to the development of specialized treatment for pain disorders associated with I NaR .Abstract Inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) are inherited pain syndromes predominantly caused by missense mutations in the peripheral neuronal voltage-gated sodium channel (Nav) isoform Nav1.7. While both IEM and PEPD mutations increase neuronal excitability, IEM mutations primarily enhance activation and PEPD mutations impair inactivation. In addition, one PEPD mutation, Nav1.7-I1461T, has been shown to increase resurgent sodium currents in dorsal root ganglion (DRG) neurons. Because resurgent currents have been implicated in increased neuronal excitability, we asked whether (1) additional PEPD mutations located within the putative inactivation gate and docking sites and (2) IEM mutations might also increase these unusual currents. Resurgent currents are generated following open-channel block at positive potentials by an endogenous blocking particle and subsequent expulsion of this blocker upon repolarization to moderately negative potentials. Here we used a mimetic of the putative blocking particle, the Navβ4 peptide, to determine if enhanced resurgent currents are induced by three distinct PEPD mutations and two IEM mutations in stably transfected HEK293 cells. We demonstrate that (1) Nav1.7-mediated resurgent currents are observed in HEK293 cells with the Navβ4 peptide in the recording pipette, (2) while the PEPD mutants M1627K, T1464I and V1299F exhibit enhanced resurgent current amplitudes compared to wild-type, the IEM mutants I848T and L858H do not, and (3) there is a strong correlation between the decay time constant of open-channel fast inactivation and resurgent current amplitude. These data suggest that resurgent currents may play a role in the neuronal hyperexcitability associated with PEPD, but not IEM, mutations.
The present results indicate that ethanol increases postsynaptic GABA(A) receptor sensitivity, enhances action potential-independent GABA release onto VTA-DA neurons, and that this latter effect is independent of GABA(B) auto-receptor inhibition of GABA release.
Activation of ventral tegmental area (VTA)-dopaminergic (DA) neurons by ethanol has been implicated in the rewarding and reinforcing actions of ethanol. GABAergic transmission is thought to play an important role in regulating the activity of DA neurons. We have reported previously that ethanol enhances GABA release onto VTA-DA neurons in a brain slice preparation. Because intraterminal Ca 2ϩ levels regulate neurotransmitter release, we investigated the roles of Ca 2ϩ -dependent mechanisms in ethanol-induced enhancement of GABA release. Acute ethanol enhanced miniature inhibitory postsynaptic current (mIPSC) frequency in the presence of the nonspecific voltage-gated Ca 2ϩ channel inhibitor, cadmium chloride, even though basal mIPSC frequency was reduced by cadmium. Conversely, the inositol-1,4,5-triphosphate receptor inhibitor, 2-aminoethoxydiphenylborane, and the sarco/endoplasmic reticulum Ca 2ϩ ATPase pump inhibitor, cyclopiazonic acid, eliminated the ethanol enhancement of mIPSC frequency. Recent studies suggest that the G protein-coupled receptor, 5-hydroxytryptamine (5-HT) 2C , may modulate GABA release in the VTA. Thus, we also investigated the role of 5-HT 2C receptors in ethanol enhancement of GABAergic transmission. Application of 5-HT and the 5-HT 2C receptor agonist, Ro-60-0175 [(␣S)-6-chloro-5-fluoro-␣-methyl-1H-indole-1-ethanamine fumarate], alone enhanced mIPSC frequency of which the latter was abolished by the 5-HT 2C receptor antagonist, SB200646 [N-(1-methyl-5-indoyl)-N-(3-pyridyl)urea hydrochloride], and substantially diminished by cyclopiazonic acid. Furthermore, SB200646 abolished the ethanol-induced increase in mIPSC frequency and had no effect on basal mIPSC frequency. These observations suggest that an increase in Ca 2ϩ release from intracellular stores via 5-HT 2C receptor activation is involved in the ethanol-induced enhancement of GABA release onto VTA-DA neurons.
Chronic and neuropathic pain constitute significant health problems affecting millions of individuals each year. Pain sensations typically originate in sensory neurons of the peripheral nervous system which relay information to the central nervous system (CNS). Pathological pain sensations can arise as result of changes in excitability of these peripheral sensory neurons. Voltage-gated sodium channels are key determinants regulating action potential generation and propagation; thus, changes in sodium channel function can have profound effects on neuronal excitability and pain signaling. At present, most of the clinically available sodium channel blockers used to treat pain are non-selective across sodium channel isoforms and can contribute to cardio-toxicity, motor impairments, and CNS side effects. Numerous strides have been made over the last decade in an effort to develop more selective and efficacious sodium channel blockers to treat pain. The purpose of this review is to highlight some of the more recent developments put forth by research universities and pharmaceutical companies alike in the pursuit of developing more targeted sodium channel therapies for the treatment of a variety of neuropathic pain conditions.
Paroxysmal extreme pain disorder (PEPD) and inherited erythromelalgia (IEM) are inherited pain syndromes arising from different sets of gain-of-function mutations in the sensory neuronal sodium channel isoform Nav1.7. Mutations associated with PEPD, but not IEM, result in destabilized inactivation of Nav1.7 and enhanced resurgent sodium currents. Resurgent currents arise after relief of ultra-fast open-channel block mediated by an endogenous blocking particle and are thought to influence neuronal excitability. As such, enhancement of resurgent currents may constitute a pathological mechanism contributing to sensory neuron hyperexcitability and pain hypersensitivity associated with PEPD. Furthermore, pain associated with PEPD, but not IEM, is alleviated by the sodium channel inhibitor carbamazepine. We speculated that selective attenuation of PEPD-enhanced resurgent currents might contribute to this therapeutic effect. Here we examined whether carbamazepine and two other sodium channel inhibitors, riluzole and anandamide, exhibit differential inhibition of resurgent currents. To gain further insight into the potential mechanism(s) of resurgent currents, we examined whether these inhibitors produced correlative changes in other properties of sodium channel inactivation. Using stably transfected human embryonic kidney 293 cells expressing wild-type Nav1.7 and the PEPD mutants T1464I and M1627K, we examined the effects of the three drugs on Nav4 peptide-mediated resurgent currents. We observed a correlation between resurgent current inhibition and a drug-mediated increase in the rate of inactivation and inhibition of persistent sodium currents. Furthermore, although carbamazepine did not selectively target resurgent currents, anandamide strongly inhibited resurgent currents with minimal effects on the peak transient current amplitude, demonstrating that resurgent currents can be selectively targeted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.