Reducing friction with specialised hull coatings or air lubrication technologies has a potential reducing energy consumption and emissions in shipping. The EU project AIRCOAT combines both by developing a passive air lubrication technology inspired by nature that is implemented on a self-adhesive foil system. Besides validating the friction reduction it is of high interest to understand the underlying mechanism that causes the reduction. Therefore, a flow channel was designed, that creates a stationary turbulent flow within a square duct allowing for non-invasive measurements by laser doppler velocimetry. The high spatial resolution of the laser device makes recording velocity profiles within the boundary layer down to the viscous sublayer possible. Determination of the wall shear stress τ enables direct comparison of different friction reduction experiments. In this paper we validate the methodology by determining the velocity profile of the flat channel wall (without coatings). We further use the results to validate a CFD model in created in OpenFOAM. We find that velocities along the longitudinal axis are generally in good agreement between numerical and experimental investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.