Faced with the 2020 SARS-CoV2 epidemic, public health officials have been seeking models that could be used to predict not only the number of new cases but also the levels of hospitalisation, critical care and deaths. In this paper we present a stochastic compartmental model capable of real-time monitoring and forecasting of the pandemic incorporating multiple streams of real-world data, reported cases, testing intensity, deaths, hospitalisations and critical care occupancy. Model parameters are estimated via a Bayesian particle filtering technique. The model successfully tracks the key variables (reported cases, critical care and deaths) throughout the two waves (March-June and September-November 2020) of the COVID-19 outbreak in Scotland. The model hospitalisation predictions in Summer 2020 are consistently lower than the recorded data, but consistent with the change to the reporting criteria by the Health Protection Scotland on 15th September. Most parameter estimates were constant over the two waves, but the infection rate and consequently the reproductive number decrease in the later stages of the first wave and increase again from July 2020. The death rates are initially high but decrease over Summer 2020 before rising again in November. The model can also be used to provide short-term predictions. We show that the 2-week predictability is very good for the period from March to June 2020, even at early stages of the pandemic. The model has been slower to pick up the increase in the case numbers in September 2020 but forecasting improves again in the later stages of the epidemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.