Rats learned, using distal room cues, to run to a goal on an elevated, circular track starting from any position on the track. The goal was one of eight equidistant, recessed cups set around the track, the goal cup being distinguished from the others solely by its position in the room. After learning, electrolytic lesions were made in the medial septal nucleus eliminating hippocampal theta rhythm in some animals but not in others. Rats without theta rhythm were no longer able to perform the spatial task, whereas rats with undisturbed theta rhythm retrained normal performance. Although rats without theta rhythm could not find their way directly to the goal, they recognized its location when they came upon it by chance. This type of spatial deficit appears similar to that shown by hippocampally lesioned patient H.M. Subsequent tests demonstrated that rats deprived of theta rhythm before training could nevertheless learn the task.
Rat hippocampal (CA1) complex spike "place cells" of freely behaving rats were recorded in pairs continuously during a series of waking (exploration and still-alert), drowsy (quiet-awake), and sleeping (slow-wave, pre-rapid-eye-movement and rapid-eye-movement sleep) behaviors. Pairs of units were selected that had nonoverlapping place fields. The rats were restricted from entering the place field of either cell overnight, and on the day of recording cells were exposed to their individual place fields independently and in a counterbalanced manner. Following exposure, recordings were made in the subsequent sleep episodes and the firing characteristics of both cells were analyzed. Following exposure, significant increases in the spiking activity of the exposed cell were observed in the subsequent sleeping states that were not evident in the unexposed cell. The increased activity was observed in the rate of firing (spikes/sec), the rate of occurrence of bursts with multiple spikes, as well as the number of bursts displaying short (2-4 msec) interspike intervals. The findings suggest that neuronal activity of hippocampal place cells in the awake states may influence the firing characteristics of these cells in subsequent sleep episodes. The increased firing rates along with the greater number of multiple spike bursts and the shorter interspike intervals within the burst, following exposure to a cell's place field, may represent possible information processing during sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.