Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Intracellular signaling during oxidative stress is complex, with organelle-to-nucleus retrograde communication pathways ill-defined or incomplete. Here we identify the 3′-phosphoadenosine 5′-phosphate (PAP) phosphatase SAL1 as a previously unidentified and conserved oxidative stress sensor in plant chloroplasts. Arabidopsis thaliana SAL1 (AtSAL1) senses changes in photosynthetic redox poise, hydrogen peroxide, and superoxide concentrations in chloroplasts via redox regulatory mechanisms. AtSAL1 phosphatase activity is suppressed by dimerization, intramolecular disulfide formation, and glutathionylation, allowing accumulation of its substrate, PAP, a chloroplast stress retrograde signal that regulates expression of plastid redox associated nuclear genes (PRANGs). This redox regulation of SAL1 for activation of chloroplast signaling is conserved in the plant kingdom, and the plant protein has evolved enhanced redox sensitivity compared with its yeast ortholog. Our results indicate that in addition to sulfur metabolism, SAL1 orthologs have evolved secondary functions in oxidative stress sensing in the plant kingdom. There is also a shift from reducing to more oxidizing states in the redox poise of plastoquinone (PQ) and other stromal redox couples such as glutathione (GSH/GSSG). All of these changes are associated with adjustment of photosystem stoichiometry and chloroplastic metabolic enzymes by chloroplast-resident kinases (2) and redox-sensitive thioredoxins (TRXs) (3), respectively, as well as activation of signaling pathways for the induction of common and unique sets of nuclear genes (4, 5).The nuclear transcriptional response to stress in chloroplasts is mediated by chemical signals emanating from the chloroplasts to the nucleus in a process called retrograde signaling (6). There are at least seven distinct retrograde signaling pathways responding to changes in chloroplastic ROS and redox state (7), including betacyclocitral for PSII-1 O 2 responses (8) and the PAP-XRN pathway which alters expression of 25% of the HL-associated transcriptome, many of which are ROS and redox associated (9). The unique gene sets which expression are induced by PSI ROS and changes in chloroplast redox poise are collectively referred to herein as plastid redox associated nuclear genes (PRANGs) (7); they include key and common stress marker genes such as ASCORBATE PEROXIDASE 2 (APX2) (10, 11) and ZAT10 (12) critical for acclimation. The nuclear regulators of PRANGs and the subsequent chloroplasttargeted stress responses, including induction of chloroplast antioxidant and redox regulation enzymes such as redoxin proteins, have been extensively elucidated for the different retrograde pathways (7,12). Despite these advances, however, in all of the PRANG retrograde signaling pathways no chloroplastic sensor(s) of ROS and redox state has been conclusively identified (7). For instance, a previously hypothesized sensor kinase for the PQ redox state (2) has recently been reascribed to facilitate H 2 O 2 production rather than redox sensi...
Edited by Joseph M. JezSulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.Sulfur (S) is an essential nutrient for all life forms. It is present in a plethora of metabolites of primary and secondary metabolism, most prominently in the amino acids cysteine and methionine, and cofactors such as iron-sulfur clusters, lipoic acid, and CoA. In the majority of these metabolites, sulfur is present in its reduced form of organic thiols; however, some compounds contain S in its oxidized form of sulfate (1, 2). Sulfate is transferred to suitable substrates onto hydroxyl or amino groups by sulfotransferases (3,4). These biological sulfation reactions as well as desulfation catalyzed by sulfatases are often denoted as sulfation pathways (Fig. 1) (5, 6).The activated sulfate for the sulfation pathways, 3Ј-phosphoadenosine 5-phosphosulfate (PAPS), 3 is formed from sulfate by two ATP-dependent steps: adenylation, i.e. the transfer of the AMP moiety of ATP to sulfate to form adenosine 5Ј-phosphosulfate (APS) by ATP sulfurylase (ATPS), and the phosphorylation of APS at its 3Ј-OH group by APS kinase. The two enzymes are either fused into a single enzyme PAPS synthase (PAPSS) in the animal kingdom or occur as independent proteins in the green lineage (7). The by-product of PAPS-dependent sulfation reactions, 3Ј-phosphoadenosine 5-phosphate (PAP), is finally dephosphorylated to AMP by 3Ј-nucleotidases. This reaction to remove PAP is important beyond the sulfation pathways, as PAP accumulation has many additional physiological effects (8,9). Sulfate activation to APS or PAPS is a prerequisite not only for sulfation pathways but also for primary sulfate assimilation in plants, algae, bacteria, and fungi (2). Parti...
The peptidyl-prolyl cis/trans isomerase hPin1 is a phosphorylation-dependent regulatory enzyme whose substrates are proteins involved in regulation of cell cycle, transcription, Alzheimer's disease, and cancer pathogenesis. We have determined the solution structure of the two domain protein hPin1-(1-163) and its separately expressed PPIase domain (50 -163) (hPin1 PPIase ) with an root mean square deviation of <0.5 Å over backbone atoms using NMR. Domain organization of hPin1 differs from that observed in structures solved by x-ray crystallography. Whereas PPIase and WW domain are tightly packed onto each other and share a common binding interface in crystals, our NMR-based data revealed only weak interaction of both domains at their interface in solution. Interaction between the two domains of full-length hPin1 is absent when the protein is dissected into the catalytic and the WW domain. It indicates that the flexible linker, connecting both domains, promotes binding. By evaluation of NOESY spectra we can show that the ␣1/1 loop, which was proposed to undergo a large conformational rearrangement in the absence of sulfate and an Ala-Pro peptide, remained in the closed conformation under these conditions. Dissociation constants of 0.4 and 2.0 mM for sulfate and phosphate ions were measured at 12°C by fluorescence spectroscopy. Binding of sulfate prevents hPin1 aggregation and changes surface charges across the active center and around the reactive and catalytically essential Cys 113 . In the absence of sulfate and/or reducing agent this residue seems to promote aggregation, as observed in hPin1 solutions in vitro.
Parvulins compose a family of small peptidyl-prolyl isomerases (PPIases) involved in protein folding and protein quality control. A number of amino acids in the catalytic cavity are highly conserved, but their precise role within the catalytic mechanism is unknown. The 0.8 Å crystal structure of the prolyl isomerase domain of parvulin Par14 shows the electron density of hydrogen atoms between the D74, H42, H123, and T118 side chains. This threonine residue has previously not been associated with catalysis, but a corresponding T152A mutant of Pin1 shows a dramatic reduction of catalytic activity without compromising protein stability. The observed catalytic tetrad is strikingly conserved in Pin1- and parvulin-type proteins and hence constitutes a common feature of small peptidyl prolyl isomerases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.