■ ACKNOWLEDGMENTS S.P.A. acknowledges the EPSRC for an Established Career Particle Technology Fellowship (EP/R003009), which provided postdoctoral support for N.J.W.P. C.B. thanks the Australian Research Council for his Future Fellowship (FT12010096).
The requirement for deoxygenation in controlled/living radical polymerisation (CLRP) places significant limitations on its widespread implementation by necessitating the use of large reaction volumes, sealed reaction vessels as well as requiring access to specialised equipment such as a glove box and/or inert gas source. As a result, in recent years there has been intense interest in developing strategies for overcoming the effects of oxygen inhibition in CLRP and therefore remove the necessity for deoxygenation. In this review, we highlight several strategies for achieving oxygen tolerant CLRP including: "polymerising through" oxygen, enzyme mediated deoxygenation and the continuous regeneration of a redox-active catalyst. In order to provide further clarity to the field, we also establish some basic parameters for evaluating the degree of "oxygen tolerance" that can be achieved using a given oxygen scrubbing strategy. Finally, we propose some applications that could most benefit from the implementation of oxygen tolerant CLRP and provide a perspective on the future direction of this field.
The application of photochemistry to polymer science has led to the development of complex yet efficient systems for polymerization, polymer post-functionalization, and materials production. Using light to activate chemical pathways in these systems not only leads to exquisite control over reaction dynamics, but also allows complex synthetic protocols to be easily achieved. Compared to polymerization systems mediated by thermal, chemical, or electrochemical means, photoinduced polymerization systems can potentially offer more versatile methods for macromolecular synthesis. We highlight the utility of light as an energy source for mediating photopolymerization, and present some promising examples of systems which are progressing polymer science through their exploitation of photochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.