Recently, reversible cluster formation was identified as an underlying cause of anomalously large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations, which poses a major challenge to the use of subcutaneous injection for some mAbs. A fundamental understanding of the structural and dynamic origins of high viscosities in concentrated mAb solutions is thus of significant relevance to mAb applications in human health care, as well as being of scientific interest. Herein, we present a detailed investigation of an IgG1-based mAb to relate the short-time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. The combination of light scattering, small-angle neutron scattering, and neutron spin echo measurement techniques conclusively demonstrates that, upon addition of Na2SO4, these antibodies form strongly bound reversible dimers at dilute concentrations that interact with each other to form large, loosely bound, transient clusters when concentrated. This hierarchical structure formation in solution causes a significant increase in the solution viscosity.
Human embryonic stem (hES) cells are renewable cell sources that have potential applications in regenerative medicine. The development of technologies to produce permanent and site-specific genome modifications is in demand to achieve future medical implementation of hES cells. We report herein that a baculoviral vector (BV) system carrying zinc-finger nucleases (ZFNs) can successfully modify the hES cell genome. BV-mediated transient expression of ZFNs specifically disrupted the CCR5 locus in transduced cells and the modified cells exhibited resistance to HIV-1 transduction. To convert the BV to a gene targeting vector, a DNA donor template and ZFNs were incorporated into the vector. These hybrid vectors yielded permanent site-specific gene addition in both immortalized human cell lines (10%) and hES cells (5%). Modified hES cells were both karyotypically normal and pluripotent. These results suggest that this baculoviral delivery system can be engineered for site-specific genetic manipulation in hES cells.
BackgroundViral delivery remains one of the most commonly used techniques today in the field of gene therapy. However, one of the remaining hurdles is the off-targeting effect of viral delivery. To overcome this obstacle, we recently developed a method to incorporate an antibody and a fusogenic molecule (FM) as two distinct molecules into the lentiviral surface. In this report, we expand this strategy to utilize a single chain antibody (SCAb) for targeted transduction.ResultsTwo versions of the SCAb were generated to pair with our various engineered FMs by linking the heavy chain and the light chain variable domains of the anti-CD20 antibody (αCD20) via a GS linker and fusing them to the hinge-CH2-CH3 region of human IgG. The resulting protein was fused to either a HLA-A2 transmembrane domain or a VSVG transmembrane domain for anchoring purpose. Lentiviral vectors generated with either version of the SCAb and a selected FM were then characterized for binding and fusion activities in CD20-expressing cells.ConclusionCertain combinations of the SCAb with various FMs could result in an increase in viral transduction. This two-molecule lentiviral vector system design allows for parallel optimization of the SCAb and FMs to improve targeted gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.