The reaction of trimethyl aluminum on the group III rich reconstructions of InAs(0 0 1) and In(0.53)Ga(0.47)As(0 0 1) is observed with scanning tunneling microscopy/spectroscopy. At high coverage, a self-terminated ordered overlayer is observed that provides the monolayer nucleation density required for subnanometer thick transistor gate oxide scaling and removes the surface Fermi level pinning that is present on the clean InGaAs surface. Density functional theory simulations confirm that an adsorbate-induced reconstruction is the basis of the monolayer nucleation density and passivation.
Articles you may be interested inSynchrotron radiation photoemission study of interfacial electronic structure of HfO2 on In0.53Ga0.47As(001)-4×2 from atomic layer deposition Appl. Phys. Lett.
Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.