SUMMARYThe accelerated development in peer-to-peer and Grid computing has positioned them as promising nextgeneration computing platforms. They enable the creation of virtual enterprises for sharing resources distributed across the world. However, resource management, application development and usage models in these environments is a complex undertaking. This is due to the geographic distribution of resources that are owned by different organizations or peers. The resource owners of each of these resources have different usage or access policies and cost models, and varying loads and availability. In order to address complex resource management issues, we have proposed a computational economy framework for resource allocation and for regulating supply and demand in Grid computing environments. This framework provides mechanisms for optimizing resource provider and consumer objective functions through trading and brokering services. In a real world market, there exist various economic models for setting the price of services based on supply-and-demand and their value to the user. They include commodity market, posted price, tender and auction models. In this paper, we discuss the use of these models for interaction between Grid components to decide resource service value, and the necessary infrastructure to realize each model. In addition to usual services offered by Grid computing systems, we need an infrastructure to support interaction protocols, allocation mechanisms, currency, secure banking and enforcement services. We briefly discuss existing technologies that provide some of these services and show their usage in developing the Nimrod-G grid resource broker. Furthermore, we demonstrate the effectiveness of some of the economic models in resource trading and scheduling using the Nimrod/G resource broker, with deadline and cost constrained scheduling for two different optimization strategies, on the World-Wide Grid testbed that has resources distributed across five continents.
SUMMARYComputational Grids are emerging as a new paradigm for sharing and aggregation of geographically distributed resources for solving large-scale compute and data intensive problems in science, engineering and commerce. However, application development, resource management and scheduling in these environments is a complex undertaking. In this paper, we illustrate the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.