Nonaqueous redox flow batteries (NRFBs) use energized organic fluids that contain redox active organic molecules (ROMs) and supporting electrolyte. Such allorganic electrolytes have wider electrochemical stability windows than the more familiar aqueous electrolytes, potentially allowing a higher energy density in the solutions of charged ROMs. As this energy density increases linearly with the concentration of the charge carriers, physicochemical properties of concentrated ROM solutions in both states of charge present considerable practical interest. For NRFBs to become competitive with other types of flow cells, the current techno-economic analyses favor highly concentrated solutions (>1 M) with high ionic conductivity (>5 mS/cm). It is not presently clear that such solutions can have the required dynamic properties. In this study, we show that ion diffusivities and conductivities of ROM-containing electrolytes reach maxima around 0.5 M and decrease significantly at higher concentrations; realistic limits are established for variations of these parameters. Furthermore, using closed-shell analogues for open-shell charged ROMs, we show that reconstitution of highly concentrated fluids during electrochemical charging will have strong adverse effects on their properties, including an increase in viscosity and decrease in conductivity and ion diffusivity. Given our results, it appears that the target concentrations of NRFB fluids need to be reconsidered in terms of concentration-dependent conductivity and viscosity.
With reference to our previous surface-force study on 1-hexyl-3-methylimidazolium ethylsulfate ([HMIM] EtSO4) using an extended surface forces apparatus, which showed an ordered structure within the nanoconfined dry ionic liquid (IL) between mica surfaces that extended up to ∼60 nm from the surface, this work focuses on the influence of the environmental humidity on the bulk, interfacial and nanoconfined structure of [HMIM] EtSO4. Infrared spectroscopy and rheometry reflect the changes in chemical and physical properties of the bulk IL due to the uptake of water when exposed to ambient humidity, while wide-angle X-ray scattering shows a mild swelling of the bulk nanostructure, and the AFM sharp tip reveals an additional surface layer at the mica-IL interface. When the water-containing [HMIM] EtSO4 is nanoconfined between two mica surfaces, no long-range order is detected, in contrast to the results obtained for the dry IL, which demonstrates that the presence of water can prevent the liquid-to-solid transformation of this IL. A combination of techniques and the calculated Bjerrum length indicate that water molecules weaken interionic electrostatic and hydrogen-bonding interactions, which lessens ion-ion correlations. Our work shows that the solid-like behavior of the nanoconfined IL strongly depends on the presence of absorbed water and hence, it has implications with regard to the correct interpretation of laboratory studies and their extension to real applications in lubrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.