Postischemic brain reperfusion is associated with a substantial and long-lasting reduction of protein synthesis in selectively vulnerable neurons. Because the overall translation initiation rate is typically regulated by altering the phosphorylation of serine 51 on the alpha-subunit of eukaryotic initiation factor 2 (eIF-2 alpha), we used an antibody specific to phosphorylated eIF-2 alpha [eIF-2(alpha P)] to study the regional and cellular distribution of eIF-2(alpha P) in normal, ischemic, and reperfused rat brains. Western blots of brain postmitochondrial supernatants revealed that approximately 1% of all eIF-2 alpha is phosphorylated in controls, eIF-2(alpha P) is not reduced by up to 30 minutes of ischemia, and eIF-2(alpha P) is increased approximately 20-fold after 10 and 90 minutes of reperfusion. Immunohistochemistry shows localization of eIF-2(alpha P) to astrocytes in normal brains, a massive increase in eIF-2(alpha P) in the cytoplasm of neurons within the first 10 minutes of reperfusion, accumulation of eIF-2(alpha P) in the nuclei of selectively vulnerable neurons after 1 hour of reperfusion, and morphology suggesting pyknosis or apoptosis in neuronal nuclei that continue to display eIF-2(alpha P) after 4 hours of reperfusion. These observations, together with the fact that eIF-2(alpha P) inhibits translation initiation, make a compelling case that eIF-2(alpha P) is responsible for reperfusion-induced inhibition of protein synthesis in vulnerable neurons.
No abstract
Background and Purpose-Ethanol consumption is inversely associated with the risk of ischemic stroke, suggesting a neuroprotective effect. In a rat model of transient cerebral ischemia, we identified ethanol as a possible treatment for acute ischemic stroke. Methods-Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 hours. Five sets of experiments were conducted: to determine the dose-response effect of ethanol on brain infarction and functional outcome; to determine whether combining ethanol and hypothermia produces synergistic neuroprotection; to determine the therapeutic windows of opportunity for ethanol in stroke; to test whether ethanol promotes intracerebral hemorrhage in a hemorrhagic or ischemic stroke or after administration of thrombolytics; and to test the affect of ethanol on hypoxia-inducible factor-1␣ protein expression. Results-Ethanol at 1.5 g/kg reduced infarct volume and behavioral dysfunction when administered at 2, 3, or 4 hours after middle cerebral artery occlusion. The protective effect of ethanol was not improved when paired with hypothermia. Ethanol did not promote cerebral hemorrhage in hemorrhagic or ischemic stroke in combination with recombinant tissue-type plasminogen activator or urokinase. Ethanol treatment (1.5 g/kg) increased protein levels of hypoxiainducible factor-1␣ at 3 hours postreperfusion. Conclusions-Ethanol exerts a strong neuroprotective effect when administered up to 4 hours after ischemia, increases expression of hypoxia-inducible factor-1␣, and does not promote intracerebral hemorrhage when used with thrombolytics. Ethanol is a potential neuroprotectant for acute ischemic stroke. (Stroke. 2012;43:205-210.)
The critical event of the intrinsic pathway of apoptosis following transient global brain ischemia is the release of cytochrome c from the mitochondria. In vitro studies have shown that insulin can signal specifically via phosphatidylinositol‐3‐OH‐kinase (PI3‐K) and Akt to prevent cytochrome c release. Therefore, insulin may exert its neuroprotective effects during brain reperfusion by blocking cytochrome c release. We hypothesized that insulin acts through PI3‐K, Akt, and Bcl‐2 family proteins to inhibit cytochrome c release following transient global brain ischemia. We found that a single bolus of insulin given immediately upon reperfusion inhibited cytochrome c release for at least 24 h, and produced a fivefold improvement in neuronal survival at 14 days. Moreover, insulin’s ability to inhibit cytochrome c release was completely dependent on PI3‐K signaling and insulin induces phosphorylation of Akt through PI3‐K. In untreated animals, there was an increase in mitochondrial Bax at 6 h of reperfusion, and Bax binding to Bcl‐XL was disrupted at the mitochondria. Insulin prevented both these events in a PI3‐K‐dependent manner. In summary, insulin regulates cytochrome c release through PI3‐K likely by activating Akt, promoting the binding between Bax and Bcl‐XL, and by preventing Bax translocation to the mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.