The CyclinB1-Cdk1 kinase is the catalytic activity at the heart of mitosis-promoting factor (MPF), yet fundamental questions concerning its role in mitosis remained unresolved. It is not known when and how rapidly CyclinB1-Cdk1 is activated in mammalian cells, nor how its activation coordinates the substantial changes in the cell at mitosis. Here, we have developed a FRET biosensor specific for CyclinB1-Cdk1 that enables us to assay its activity with very high temporal precision in living human cells. We show that CyclinB1-Cdk1 is inactive in G2 phase and activated at a set time before nuclear envelope breakdown, thereby initiating the events of prophase. CyclinB1-Cdk1 levels rise to their maximum extent over the course of approximately 30 min, and we demonstrate that different levels of CyclinB1-Cdk1 kinase activity trigger different mitotic events, thus revealing how the remarkable reorganization of the cell is coordinated at mitotic entry.
Cyclin B1-Cdk1 is the key initiator of mitosis, but when and where activation occurs has not been precisely determined in mammalian cells. Activation may occur in the nucleus or cytoplasm, as just before nuclear envelope breakdown, Polo-like kinase1 (Plk1) is proposed to phosphorylate cyclin B1 in its nuclear export sequence (NES), to trigger rapid nuclear import. We raised phospho-specific antibodies against cyclin B1 that primarily recognise the active form of the complex. We show that cyclin B1 is initially phosphorylated on centrosomes in prophase and that Plk1 phosphorylates cyclin B1, but not in the NES. Furthermore, phosphorylation by Plk1 does not cause cyclin B1 to move into the nucleus. We conclude that cyclin B1-Cdk1 is first activated in the cytoplasm and that centrosomes may function as sites of integration for the proteins that trigger mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.