We present a study of the energy levels present in a perovskite solar cell using Kelvin probe and UV air photoemission measurements. By constructing a detailed map of the energy levels in the system we are able to predict the maximum open circuit voltage of the solar cell.
Lead halide perovskites have attracted great attention due to their excellent optoelectronic properties, with great progress being made in their performance as light emitting diodes (LEDs), photodiodes, and solar cells. Demonstrating large scale, high-resolution patterning of perovskites
A visible perovskite distributed feedback laser is fabricated for the first time. Through the use of nanocrystal pinning, highly luminescent methylammonium lead bromide films are used to produce stable lasers emitting at 550 nm, with a low threshold of 6 µJcm−2. The lasers were able to support multiple polarisations, and could be switched between transverse magnetic and transverse electric mode operation through simple tuning of the distributed feedback grating period.
Hybrid perovskite materials have considerable potential for light emitting devices such as LEDs and lasers. We combine solution processed CH3NH3PbI3 perovskite with UV nanoimprinted polymer gratings to fabricate distributed feedback (DFB) lasers. The lead acetate deposition route is shown to be an effective method for fabricating low-loss waveguides (loss coefficient ~6 cm-1) and highly compatible with the polymer grating substrates. The nanoimprinted perovskite exhibited single-mode band-edge lasing, confirmed by angle-dependent transmission measurements. Depending on the excitation pulse duration the lasing threshold shows a value of 110 μJ/cm2 under nanosecond pumping and 4 μJ/cm2 under femtosecond pumping. We demonstrate further that this laser has excellent stability with a lifetime of 108 pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.