SummaryRetinoblastoma protein (Rb) plays a key role in cell cycle control, cell differentiation, and apoptosis in animals. In this study, we used virus-induced gene silencing (VIGS) to investigate the cellular functions of Rb in higher plants. VIGS of NbRBR1, which encodes the Nicotiana benthamiana Rb homolog, resulted in growth retardation and abnormal organ development. At the cellular level, Rb suppression caused prolonged cell proliferation in tissues that are normally differentiated, which indicates that Rb is a negative regulator of plant cell division. Furthermore, differentiation of the epidermal pavement cells and trichomes was partially retarded, and stomatal clusters formed in the epidermis, likely due to uncontrolled cell division of stomata precursor cells. Rb suppression also caused extra DNA replication in endoreduplicating leaf cells, suggesting a role of Rb in the endocycle. These Rb phenotypes were accompanied by stimulated transcription of E2F and E2F-regulated S-phase genes. Thus, disruption of Rb function in plants leads to ectopic cell division in major organs that correlates with a delay in cell differentiation as well as increased endoreduplication, which indicates that Rb coordinates these processes in plant organ development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.