The emergence of an aging society is inevitable due to the continued increases in life expectancy and decreases in birth rate. These social changes require new smart healthcare services for use in daily life, and covid-19 has also led to a contactless trend necessitating more non-face-to-face health services. Due to the improvements that have been achieved in healthcare technologies, an increasing number of studies have attempted to predict and analyze certain diseases in advance. Research on stroke diseases is actively underway, particularly with the aging population. Stroke, which is fatal to the elderly, is a disease that requires continuous medical observation and monitoring, as its recurrence rate and mortality rate are very high. Most studies examining stroke disease to date have used MRI or CT images for simple classification. This clinical approach (imaging) is expensive and time-consuming while requiring bulky equipment. Recently, there has been increasing interest in using non-invasive measurable EEGs to compensate for these shortcomings. However, the prediction algorithms and processing procedures are both time-consuming because the raw data needs to be separated before the specific attributes can be obtained. Therefore, in this paper, we propose a new methodology that allows for the immediate application of deep learning models on raw EEG data without using the frequency properties of EEG. This proposed deep learning-based stroke disease prediction model was developed and trained with data collected from real-time EEG sensors. We implemented and compared different deep-learning models (LSTM, Bidirectional LSTM, CNN-LSTM, and CNN-Bidirectional LSTM) that are specialized in time series data classification and prediction. The experimental results confirmed that the raw EEG data, when wielded by the CNN-bidirectional LSTM model, can predict stroke with 94.0% accuracy with low FPR (6.0%) and FNR (5.7%), thus showing high confidence in our system. These experimental results demonstrate the feasibility of non-invasive methods that can easily measure brain waves alone to predict and monitor stroke diseases in real time during daily life. These findings are expected to lead to significant improvements for early stroke detection with reduced cost and discomfort compared to other measuring techniques.
Small sized devices with communication capability are accepted in real applications recent years and the applications increase business efficiency. We developed an asset tracking application using a wireless sensor network. The application consists of three components: a wireless sensor network, a middleware, and a user interface. The sensor network consists of 21 mobile nodes, 29 reference nodes, and one gateway. Each mobile node equipped with a location sensor is attached to one medical asset so that the application tracks 21 medical assets. The middleware abstracts the specification of the sensor network. The graphical user interface is developed according to the requirements of nurses and doctors of Gil Medical Center in Korea so the application fits the asset tracking business of the medical center. The application tracks mobile medical assets in the emergency room of Gil Medical Center. The application shortens the searching time for mobile medical assets from about twenty minutes to within one minute. By shortening the searching time of the assets, the nurses can use more times to take care of patients and the patients can receive better medical services.
Stroke is the third highest cause of death worldwide after cancer and heart disease, and the number of stroke diseases due to aging is set to at least triple by 2030. As the top three causes of death worldwide are all related to chronic disease, the importance of healthcare is increasing even more. Models that can predict real-time health conditions and diseases using various healthcare services are attracting increasing attention. Most diagnosis and prediction methods of stroke for the elderly involve imaging techniques such as magnetic resonance imaging (MRI). It is difficult to rapidly and accurately diagnose and predict stroke diseases due to the long testing times and high costs associated with MRI. Thus, in this paper, we design and implement a health monitoring system that can predict the precursors of stroke diseases in the elderly in real time during daily walking. First, raw electroencephalography (EEG) data from six channels were preprocessed via Fast Fourier Transform (FFT). The raw EEG power values were then extracted from the raw spectra: alpha (α), beta (β), gamma (γ), delta (δ), and theta (θ) as well as the low β, high β, and θ to β ratio, respectively. The experiments in this paper confirm that the important features of EEG biometric signals alone during walking can accurately determine stroke precursors and occurrence in the elderly with more than 90% accuracy. Further, the Random Forest algorithm with quartiles and Z-score normalization validates the clinical significance and performance of the system proposed in this paper with a 92.51% stroke prediction accuracy. The proposed system can be implemented at a low cost, and it can be applied for early disease detection and prediction using the precursor symptoms of real-time stroke. Furthermore, it is expected that it will be able to detect other diseases such as cancer and heart disease in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.