We review recent results in literature data mining for biology and discuss the need and the steps for a challenge evaluation for this field. Literature data mining has progressed from simple recognition of terms to extraction of interaction relationships from complex sentences, and has broadened from recognition of protein interactions to a range of problems such as improving homology search, identifying cellular location, and so on. To encourage participation and accelerate progress in this expanding field, we propose creating challenge evaluations, and we describe two specific applications in this context.
Biological events such as gene expression, regulation, phosphorylation, localization and protein catabolism play important roles in the development of diseases. Understanding the association between diseases and genes can be enhanced with the identification of involved biological events in this association. Although biological knowledge has been accumulated in several databases and can be accessed through the Web, there is no specialized Web tool yet allowing for a query into the relationship among diseases, genes and biological events. For this task, we developed DigSee to search MEDLINE abstracts for evidence sentences describing that ‘genes’ are involved in the development of ‘cancer’ through ‘biological events’. DigSee is available through http://gcancer.org/digsee.
Ubiquitin-protein ligase (E3) is a key enzyme targeting specific substrates in diverse cellular processes for ubiquitination and degradation. The existing findings of substrate specificity of E3 are, however, scattered over a number of resources, making it difficult to study them together with an integrative view. Here we present E3Net, a web-based system that provides a comprehensive collection of available E3-substrate specificities and a systematic framework for the analysis of E3-mediated regulatory networks of diverse cellular functions. Currently, E3Net contains 2201 E3s and 4896 substrates in 427 organisms and 1671 E3-substrate specific relations between 493 E3s and 1277 substrates in 42 organisms, extracted mainly from MEDLINE abstracts and UniProt comments with an automatic text mining method and additional manual inspection and partly from high throughput experiment data and public ubiquitination databases. The significant functions and pathways of the extracted E3-specific substrate groups were identified from a functional enrichment analysis with 12 functional category resources for molecular functions, protein families, protein complexes, pathways, cellular processes, cellular localization, and diseases. E3Net includes interactive analysis and navigation tools that make it possible to build an integrative view of E3-substrate networks and their correlated functions with graphical illustrations and summarized descriptions. As a result, E3Net provides a comprehensive resource of E3s, substrates, and their functional implications summarized from the regulatory network structures of E3-specific substrate groups and their correlated functions. This resource will facilitate further in-depth investigation of ubiquitination-dependent regulatory mechanisms. E3Net is freely available online at http://pnet.kaist.ac.kr/e3net. Molecular & Cellular Proteomics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.