Riboswitches, whose folding is controlled by binding of metabolites to the aptamer domain, regulate downstream gene expression. Folding properties of the aptamer strongly influence the conformation of the downstream expression platform, which controls transcription termination or translation initiation. We have characterized the energy landscape of the add riboswitch aptamer quantitatively by unfolding and refolding the molecule with mechanical force using the coarse-grained self-organized polymer model and Brownian dynamics simulation. Multiple folding states have been found during the folding process of the aptamer, both with and without adenine, consistent with single molecule studies of purine riboswitches. Adenine binding stabilizes the folded structure and significantly decreases the unfolding rate of the aptamer, the folding of which is in competition with the formation of the downstream stem-loop structure in the complete riboswitch. These results provide insights into the mechanism of gene regulation by the RNA switches.
Enhanced dynamical fluctuations of RNAs, facilitated by a network of water molecules with strong interactions with RNA, are suspected to be critical in their ability to respond to a variety of cellular signals. Using atomically detailed molecular dynamics simulations at various temperatures of purine (adenine) and preQ1 sensing riboswitch aptamers, which control gene expression by sensing and binding to metabolites, we show that water molecules in the vicinity of RNAs undergo complex dynamics depending on the local structures of the RNAs. The overall lifetimes of hydrogen bonds (HBs) of surface-bound waters are more than at least 1-2 orders of magnitude longer than those of bulk water. Slow hydration dynamics, revealed in the non-Arrhenius behavior of the relaxation time, arises from high activation barriers to break water HBs with a nucleotide and by reduced diffusion of water. The relaxation kinetics at specific locations in the two RNAs show a broad spectrum of time scales reminiscent of glass-like behavior, suggesting that the hydration dynamics is highly heterogeneous. Both RNAs undergo dynamic transition at T = TD ≳ 200 K, as assessed by the mean-square fluctuation of hydrogen atoms ⟨x(2)⟩, which undergoes an abrupt harmonic-to-anharmonic transition at TD. The near-universal value of TD found for these RNAs and previously for tRNA is strongly correlated with changes in hydration dynamics as T is altered. Hierarchical dynamics of waters associated with the RNA surface, revealed in the motions of distinct classes of water with well-separated time scales, reflects the heterogeneous local environment on the molecular surface of RNA. At low temperatures, slow water dynamics predominates over structural transitions. Our study demonstrates that the complex interplay of dynamics between water and the local environment in the RNA structures could be a key determinant of the functional activities of RNA.
Riboswitches are RNA elements that allosterically regulate gene expression by binding cellular metabolites. The SAM-III riboswitch, one of several classes that binds S-adenosylmethionine (SAM), represses translation upon binding SAM (OFF state) by encrypting the ribosome binding sequence. We have carried out simulations of the RNA by applying mechanical force (f) to the ends of SAM-III, with and without SAM, to get quantitative insights into the f-dependent structural changes. Force-extension (z) curves (FECs) for the apo (ON) state, obtained in simulations in which f is increased at a constant loading rate, show three intermediates, with the first one being the rupture of SAM binding region, which is greatly stabilized in the OFF state. Force-dependent free energy profiles, G(z, f), as a function of z, obtained in equilibrium constant force simulations, reveal the intermediates observed in FECs. The predicted stability difference between the ON and OFF states using G(z, f) is in excellent agreement with experiments. Remarkably, using G(z, f)s and estimate of an effective diffusion constant at a single value of f allows us to predict the f-dependent transition rates using theory of first passage times for both the apo and holo states. To resolve the kinetics of assembly of SAM-III riboswitch in structural terms, we use force stretch-quench pulse sequences in which the force on RNA is maintained at a low (fq) value starting from a high value for a time period tq. Variation of tq over a wide range results in resolution of elusive states involved in the SAM binding pocket, and leads to accurate determination of folding times down to fq = 0. Quantitative measure of the folding kinetics, obtained from the folding landscape, allows us to propose that, in contrast to riboswitches regulating transcription, SAM-III functions under thermodynamic control provided the basal concentration of SAM exceeds a small critical value. All of the predictions are amenable to tests in single molecule pulling experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.