This paper addresses the numerical simulation of two-phase flow heat transfer in the helically coiled tubes of an integral type pressurized water reactor steam generator under normal operation using a computational fluid dynamics code. The shell-side flow field where a single-phase fluid flows in the downward direction is also calculated in conjunction with the tube-side two-phase flow characteristics. For the calculation of tube-side two-phase flow, the inhomogeneous two-fluid model is used. Both the Rensselaer Polytechnic Institute wall boiling model and the bulk boiling model are implemented for the numerical simulations of boiling-induced two-phase flow in a vertical straight pipe and channel, and the computed results are compared with the available measured data. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. Both the internal and external turbulent flows are simulated using the standard k-ε model. From the results of the present numerical simulation, it is shown that the bulk boiling model can be applied to the simulation of two-phase flow in the helically coiled steam generator tubes. In addition, the present simulation method is considered to be physically plausible in the light of discussions on the computed results.
Temperature gradients in the thermally stratified fluid flowing through a pipe may cause undesirable excessive thermal stresses at the pipe wall in the axial, circumferential, and radial directions, which can eventually lead to damages such as deformation, support failure, thermal fatigue, cracking, etc., to the piping systems. Several nuclear power plants have so far experienced such unwelcome mechanical damages to the pressurizer surgeline, feedwater nozzle, high pressure safety injection lines, or residual heat removal lines at a pressurized water reactor (PWR). In this regard, determining with accuracy the transient temperature distributions in the wall of a piping system subjected to internally thermal stratification is the essential prerequisite for the assessment of the structural integrity of such a piping system. In this study, to realistically predict the transient temperature distributions in the wall of an actual PWR pressurizer surgeline with a complex geometry of three-dimensionally bent piping, three-dimensional transient computational fluid dynamics (CFD) calculations involving the conjugate heat transfer analysis are performed for the PWR pressurizer surgeline subjected to either out- or in-surge flows using a commercial CFD code. In addition, the wall temperature distributions obtained by taking into account the existence of wall thickness are compared with those by neglecting it to identify some requirements for a realistic and conservative thermal analysis from a safety viewpoint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.