Shoreline processes observed by a video monitoring system were investigated under different wave conditions. A 30 m-high tower equipped with video cameras was constructed in Hujeong Beach, South Korea, where coastal erosion was suspected to occur. Two-year shoreline data since December 2016 showed that beach area, Ab, has decreased, but periods of rapid increase in Ab were also observed. Shoreline change was closely related to the wave propagation directions and bottom topography. Ab increased when waves approached the shore obliquely, whereas it decreased when they approached in a normal direction. The shoreline became undulated when Ab increased, while it became flatter when Ab decreased. The undulation process was influenced by nearshore bedforms because the shoreline protruded in the lee area where underwater rocks or nearshore sandbars actively developed, with a sheltering effect on waves. Specifically, the locations of shoreline accretion corresponded to the locations where the sandbar horns (location where a crescentic sandbar protrudes toward the shore) developed, confirming the out-of-phase coupling between sandbars and shoreline. When waves with higher energy approached normal to the shore, the sheltering effect of sandbars and underwater rocks became weaker and offshore sediment transport occurred uniformly along the coast, resulting in flatter shorelines.
We report extraordinary seabed erosion that occurred at a depth of ~8.3 m at Hujeong Beach, South Korea. The seabed was eroded for 0.7 m during a ~2.3‐day period under storm conditions. The maximum significant wave height was ~3.8 m, which was unexpected considering the traditional closure depth concept. Four storm events were recorded within 36 day of the experimental period, but the severe erosion only occurred during the first storm. The erosion started when the nearbed flow velocity rapidly increased to reach its maximum at 0.27 m/s, and it continued until this velocity remained at its maximum. Additional factors responsible for the unanticipated erosion process were the current and wave skewness. The erosion was facilitated when the current direction was actively changing and the magnitude of positive skewness increased during the storm period. These factors are likely to have intensified the nearbed flow turbulence and bed shear stress.
Coastal structures, such as revetments, are built to protect specific areas and facilities from the attack of extreme waves. However, unexpected environmental damage could be induced from these structures when inappropriately applied. Here, we present the results of measurements carried out using a video monitoring system, indicating the rapid collapse of a coastal revetment due to the attack of storm waves. The destruction occurred in sequence; that is, it was initiated by human activities, followed by a natural disaster. First, the beach in front of the revetment was eroded, even under moderate wave conditions, because sediments transported into this area were blocked by a rip-rap jetty. After the beach width was severely reduced due to the erosion, the revetment collapsed when storm waves attacked the area. The destruction seems accidental and inevitable because it was directly caused by the storm. However, it could have been avoided by predicting and preventing the erosion due to the jetty. This study provides insights into sequential processes that lead to the failure of coastal revetments, which could be applied for prevention of similar anthropogenic disasters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.