Centella asiatica (Apiaceae) is a tropical/subtropical medicinal plant, which contains a variety of triterpenoids, including madecassoside, asiaticoside, madecassic acid, and asiatic acid. In this study, we tested the efficiency of hairy root (HR) induction in C. asiatica from leaf and petiole explants. Leaves and petioles collected from C. asiatica plants were suspended in agro-stock for 30 min and co-cultured with Agrobacterium rhizogenes for 3 days to induce HR formation. The transformation efficiency of leaf and petiole explants was approximately 27% and 12%, respectively. A total of 36 HR lines were identified by PCR-based amplification of rol genes, and eight of these lines were selected for further analysis. Among all eight HR lines, the petiole-derived lines HP4 and HP2 displayed the highest growth index (37.8) and the highest triterpenoids concentration (46.57 mg∙g−1), respectively. Although triterpenoid concentration was >2-fold higher in leaves than in petioles of C. asiatica plants, the accumulation of triterpenoids in petiole-derived HR cultures was 1.4-fold higher than that in leaf-derived HR cultures. Additionally, in both leaf- and petiole-derived HR cultures, terpenoid production was higher in HRs than in adventitious roots. These results demonstrate that the triterpenoid content in the explant does not affect the triterpenoid content in the resultant HRs. The HR culture of C. asiatica could be scaled up to enable the mass production of triterpenoids in bioreactors for the pharmaceutical and cosmetic industries.
Cnidium officinale is an important medicinal crop grown in Asia for its pharmacological properties. In this study, tetraploid breeding was conducted to increases the content of medicinal compound and tolerance to the environmental conditions using in vitro shoot culture of C. officinale. For this, we generated tetraploid C. officinale plants using oryzalin, a chromosome doubling agent, and compared the morphological traits, cytological characteristics, and heat stress-responsive gene expression levels between tetraploid and diploid genotypes. Chromosome doubling efficiency was the highest in plantlets treated with 4.0 mg∙L−1 oryzalin for 2 days. Compared with diploids, the plant height of tetraploids was reduced, while the petiole diameter was increased by approximately 39%. The dry matter of tetraploid leaves was significantly higher than that of diploid leaves. Compared with diploids, tetraploids showed higher chloroplast number and stomatal complex size but lower chlorophyll and carotenoid contents. The phenolic content of tetraploid plantlets was significantly higher than that of diploid plantlets. Contents of naringin as well as salicylic acid and gentisic acid, which are strong antioxidant compounds, were dramatically increased upon tetraploidization. Interestingly, liquid chromatography–mass spectrometry (LC–MS) analyses revealed increased levels of senkyunolide F and phthalide in tetraploid roots but not in tetraploid or diploid leaves.
Sageretia thea is used in the preparation of herbal medicine in China and Korea; this plant is rich in various bioactive compounds, including phenolics and flavonoids. The objective of the current study was to enhance the production of phenolic compounds in plant cell suspension cultures of Sageretia thea. Optimum callus was induced from cotyledon explants on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D; 0.5 mg L−1), naphthalene acetic acid (NAA, 0.5 mg L−1), kinetin (KN; 0.1 mg L−1) and sucrose (30 g L−1). Browning of callus was successfully avoided by using 200 mg L−1 ascorbic acid in the callus cultures. The elicitor effect of methyl jasmonate (MeJA), salicylic acid (SA), and sodium nitroprusside (SNP) was studied in cell suspension cultures, and the addition of 200 µM MeJA was found suitable for elicitation of phenolic accumulation in the cultured cells. Phenolic and flavonoid content and antioxidant activity were determined using 2,2 Diphenyl 1 picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethybenzothiazoline-6-sulphonic acid (ABTS), ferric reducing antioxidant power (FRAP) assays and results showed that cell cultures possessed highest phenolic and flavonoid content as well as highest DPPH, ABTS, and FRAP activities. Cell suspension cultures were established using 5 L capacity balloon-type bubble bioreactors using 2 L of MS medium 30 g L−1 sucrose and 0.5 mg L−1 2,4-D, 0.5 mg L−1 NAA, and 0.1 mg L−1 KN. The optimum yield of 230.81 g of fresh biomass and 16.48 g of dry biomass was evident after four weeks of cultures. High-pressure liquid chromatography (HPLC) analysis showed the cell biomass produced in bioreactors possessed higher concentrations of catechin hydrate, chlorogenic acid, naringenin, and other phenolic compounds.
Miraculin, derived from the miracle fruit ( Synsepalum dulcificum ), is a taste-regulating protein that interacts with human sweet-taste receptors and transforms sourness into sweet taste. Since miracle fruit is cultivated in West Africa, mass production of miraculin is limited by regional and seasonal constraints. Here, we investigated mass production of recombinant miraculin in carrot ( Daucus carota L.) callus cultures using an air-lift bioreactor. To increase miraculin expression, the oxidative stress-inducible SWPA2 promoter was used to drive the expression of miraculin gene under various stress treatments. An 8 h treatment of hydrogen peroxide (H 2 O 2 ) and salt (NaCl) increased the expression of miraculin gene by fivefold compared with the untreated control. On the other hand, abscisic acid, salicylic acid, and methyl jasmonate treatments showed no significant impact on miraculin gene expression compared with the control. This shows that since H 2 O 2 and NaCl treatments induce oxidative stress, they activate the SWPA2 promoter and consequently up-regulate miraculin gene expression. Thus, the results of this study provide a foundation for industrial-scale production of recombinant miraculin protein using transgenic carrot cells as a heterologous host.
Cnidium officinale is a valuable medicinal plant cultivated in Asia for its rhizomes. This study reports the in vitro regeneration of Cnidium officinale plants and the induction of rhizomes from microshoots. The rhizomatous buds of Cnidium officinale induced multiple shoots on Murashige and Skoog (MS) medium supplemented with 0.5 mg L−1 BA, which led to the regeneration of plants within four weeks of culture. After four weeks of culture, the plants were assessed for fresh weight, the number of leaves, the number of roots, and the length of roots to compare the performance of the different clones. The clones with good growth characteristics were selected with the aid of a flow cytometric analysis of 2C nuclear DNA content. The plants bearing high DNA values showed better growth characteristics. Various factors, namely, sucrose concentration (30, 50, 70, and 90 g L−1), ABA (0, 0.5, 1.0, and 2.0 mg L−1), the synergistic effects of BA (1.0 mg L−1) + NAA (0.5 mg L−1) and BA (1.0 mg L−1) + NAA (0.5 mg L−1) + ABA (1.0 mg L−1) with or without activated charcoal (1 g L−1), and light and dark incubation were tested on rhizome formation from microshoots. The results of the above experiments suggest that MS medium supplemented with 50 g L−1 sucrose, 1.0 mg L−1 ABA, and 1 g L−1 AC is good for the induction of rhizomes from the shoots of Cnidium officinale. Plantlets with rhizomes were successfully transferred to pots, and they showed 100% survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.